

PACKAGE GAS / ELECTRIC ROOFTOP UNITS

FORM NO. EXR11-841 REV. 2 Supersedes Form No. EXR11-841 Rev. 1

Featuring Industry Standard R-410A Refrigerant

· R-410A

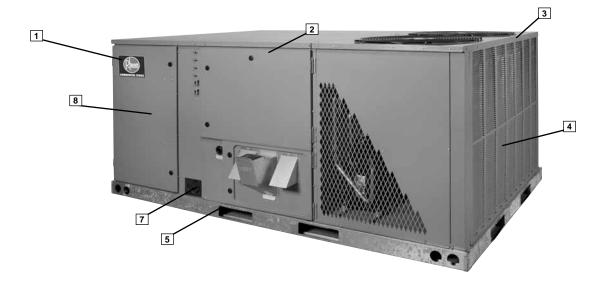
SKNL-B HIGH EFFICIENCY SERIES NOMINAL SIZES 6-12.5 TONS [21.1-44.0 kW]

Unit shown with optional louvered coil protection.

TABLE OF CONTENTS

Introduction
Unit Features & Benefits4-7
Selection Procedure
Model Identification Options9-10
General Data
SKNL- Series11-17
General Data Notes18
Performance Data
SKNL- Series19-23
Airflow Performance
SKNL- Series24-28
Electrical Data
SKNL- Series
Dimensional Data
Accessories
Mechanical Specifications
Typical Wiring63-66

These quality features are included in the Rheem Package Gas/Electric Unit



STANDARD FEATURES INCLUDE:

- R-410A HFC refrigerant.
- · Complete factory charged, wired and run tested.
- Scroll compressors with internal line break overload and highpressure protection.
- Single stage compressor on B072 models.
- Dual stage compressor on B090 B151 models.
- · Convertible airflow.
- TXV refrigerant metering system on each circuit (except on B072).
- High Pressure and Low Pressure/Loss of charge protection standard on all models.
- Solid Core liquid line filter drier on each circuit.
- Single slab, single pass designed evaporator and condenser coils facilitate easy cleaning for maintained high efficiencies.
- · Cooling operation up to 125 degree F ambient.
- Foil faced insulation encapsulated throughout entire unit minimizes airborne fibers from the air stream.
- Hinged major access door with heavy-duty gasketing, 1/4 turn latches and door retainers.
- · Slide Out Indoor fan assembly for added service convenience.
- Powder Paint Finish meets ASTMB117 steel coated on each side for maximum protection. G90 galvanized.
- One piece top cover and one piece base pan with drawn supply and return opening for superior water management.

- · Forkable base rails for easy handling and lifting.
- · Single point electrical and gas connections.
- Internally sloped slide out condensate pan conforms to ASHRAE 62 standards.
- High performance belt drive motor with variable pitch pulleys and quick adjust belt system.
- Permanently lubricated evaporator, condenser and gas heat inducer motors.
- Condenser motors are internally protected, totally enclosed with shaft down design.
- 2 inch filter standard with slide out design.
- Two stage gas valve, direct spark ignition, and induced draft for efficiency and reliability.
- Tubular heat exchange for long life and induced draft for efficiency and reliability.
- · Solid state furnace control with on board diagnostics.
- 24 volt control system with resettable circuit breakers.
- Colored and labeled wiring.
- Copper tube/Aluminum Fin coils (12¹/₂ uses MicroChannel condenser).
- · Molded compressor plug.

Rheem Package equipment is designed from the ground up with the latest features and benefits required to compete in today's market. The clean design stands alone in the industry and is a testament to the quality, reliability, ease of installation and serviceability that goes into each unit. Outwardly, the large Rheem *Commercial Series*TM label (1) identifies the brand to the customer.

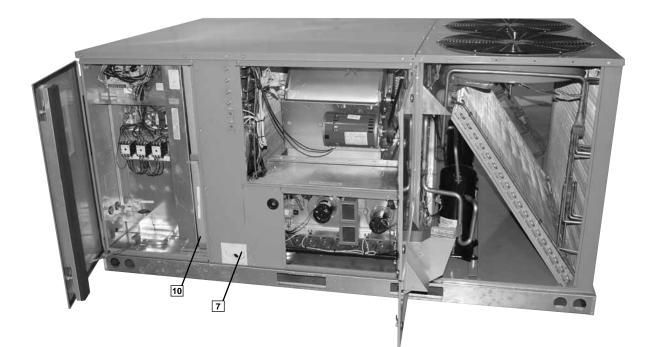
The sheet-metal cabinet (2) uses nothing less than 18-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a one-piece top with a 1/8" drip lip (3), gasket-protected

panels and screws. The Rheem hail guard (4) (optional) is its trademark, and sets the standard for coil protection in the industry. Every Rheem package unit uses the toughest finish in the industry, using electro deposition baked-on enamel tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

Anything built to last must start with the right foundation. In this case, the foundation is 14-gauge, commercial-grade, full-perimeter base rails ([5]), which integrate fork slots and rigging holes to save set-up time on the job site. The base pan is stamped, which forms a 1-1/8" flange around the supply and return opening and has eliminated the worry of water entering the conditioned space ([6]). The drainpan ([7]) is made of material that resists the growth of harmful bacteria and is sloped for the latest IAQ benefits. Furthermore, the drain pan slides out for easy cleaning. The insulation has been placed on the underside of the basepan, removing areas that would allow for potential moisture accumulation, which can facilitate growth of harmful bacteria. All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden.

During development, each unit was tested to U.L. 1995, ANSI 21.47, AHRI 340-370 and other Rheem-required reliability tests. Rheem adheres to stringent ISO 9002 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate (3). Contractors can rest assured that when a Rheem package unit arrives at the job, it is ready to go with a factory charge and quality checks. Each unit also proudly displays the "Made in the USA" designation.

Access is granted with 1/4 turn fasteners and hinged access panels. Access to all major compartments is from the front of the unit, including the filter and electrical compartment, blower compartment, furnace section, and outdoor section. Each panel is permanently embossed with the compartment name (control/filter access, blower access and furnace access).


Electrical and filter compartment access is through a large hingedaccess panel. The unit charging chart is located on the inside of the electrical and filter compartment door. Electrical wiring diagrams are found on the control box cover, which allows contractors to move them to more readable locations. To the right of the control box the model and serial number can be found. Having this information on the inside

will assure model identification for the life of the product. The production line quality test assurance label is also placed in this location (9). The twoinch throwaway filters (10) are easily removed on a tracked system for easy replacement.

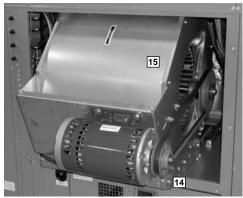
4

Inside the control box (11), each electrical component is clearly identified with a label that matches the component to the wire diagram for ease of trouble shooting. All wiring is numbered on each end of the termination and colorcoded to match the wiring diagram. The integrated furnace control, used to control furnace operation, incorporates a flashing LED troubleshooting device. Flash codes are clearly outlined on the unit wiring diagram. The control transformer has a low voltage circuit breaker that trips if a low voltage electrical short occurs. There is a blower contactor and compressor contactor for each compressor.

For added convenience in the field, a factory-installed convenience outlet and disconnect (12) are available. Low and High voltage can enter either from the side or through the base.

Low-voltage connections are made through the low-voltage terminal strip. For ease of access, the U.L.-required low voltage barrier can be temporarily removed for low-voltage termination and then reinstalled. The high-voltage connection is terminated at the number 1 compressor contactor. The suggested mounting for the field-installed disconnect is on the exterior side of the electrical control box.

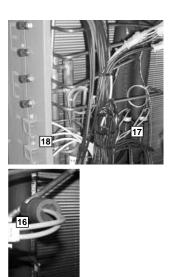
To the right of the electrical and filter compartment are the externally mounted gauge ports, which are permanently identified by embossed wording that clearly identifies the compressor circuit, high pressure connection and low pressure connection (13). With the gauge ports mounted externally, an



accurate diagnostic of system operation can be performed quickly and easily. Brass caps on the shraeder fitting assure that the gauge parts are leak proof.

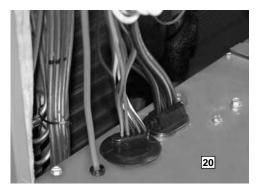
The blower compartment is to the right of the gauge ports and can be accessed by 1/4 turn fastener. To allow easy maintenance of the blower assembly, the entire assembly easily slides out by removing two 3/8" screws from the blower retention bracket. The adjustable motor pulley (14) can easily be adjusted by loosening the bolts on either side of the motor mount. Removing the bolts allows for easy removal of the blower pulley by pushing the blower assembly up to loosen the belt. Once the belt is removed, the motor sheave can be adjusted to the desired number of turns, ranging from 0 to 6 turns open. Where the demands for the job require high static, Rheem has high-static drives available that deliver nominal airflow up to 1.5" of static. By referring to the airflow performance tables listed in the installation instructions, proper static pressure and CFM requirements can be dialed in. The scroll housing (15) and blower scroll provide quiet and effi-

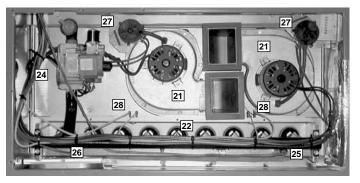
cient airflow. The blower sheave is secured by an "H" bushing which firmly secures the pulley to the blower shaft for years of troublefree operation. The "H" bushing allows for easy removal of the blower pulley from the shaft. as opposed to the use of a set screw,



which can score the shaft, creating burrs that make blower-pulley removal difficult.

Also inside the blower compartment is the low-ambient control (16), low-pressure switch (17),


high-pressure switch (18) and freeze stat refrigerant safety device (19). The low-ambient control allows for operation of the compressor down to 0 degrees ambient temperature by cycling the outdoor fans on high pressure. The high-pressure switch will shut off the compressors if pressures in excess of 610 PSIG are detected, this may occur if the outdoor fan motor fails. The low-pressure switch shuts off the compressors if low pressure is detected due to loss of charge. The freeze stat protects the compressor if the evaporator coil gets too cold

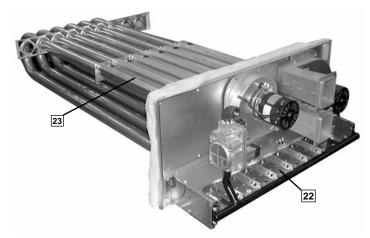


(below freezing) due to low airflow. Each factory-installed option is brazed into the appropriate high or low side and wired appropriately. Use of polarized plugs and sharder fittings allow for easy field installation.

Inside the blower compartment the interlaced evaporator can also be viewed. The evaporator uses enhanced fin technology for maximum heat transfer. The TXV metering device assures even distribution of refrigerant throughout the evaporator. (Note: the single stage 6 ton utilizes an orifice).

Wiring throughout the unit is neatly bundled and routed. Where wire harnesses go through the condenser bulkhead or blower deck, a molded wire harness assembly (20) provides an air-tight and water-tight seal, and provides strain relief. Care is also taken to tuck raw edges of insulation behind sheet metal to improve indoor air quality.

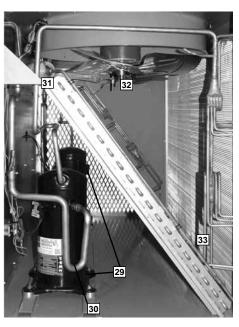
The furnace compartment contains the latest furnace technology on the market. The draft inducers (21) draw the flame from the


Rheem exclusive in-shot burners ($\boxed{22}$) into the aluminized tubular heat exchanger ($\boxed{23}$) for clean, efficient gas heat. Stainless steel heat exchangers can be factory installed for those applications that have high fresh-air requirements, or applications in corrosive environments. Each furnace is equipment with a two-stage gas valve ($\boxed{24}$), which provides two stages of gas heat input. The first stage operates at 50% of the second stage (full fire). 81% steady state efficiency is maintained on both first and second stage by staging the multiple inducers to optimize the combustion airflow and maintain a near stioceometric burn at each stage.

The direct spark igniter (25) assures reliable ignition in the most

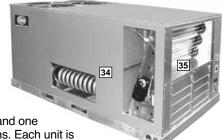
adverse conditions. This is coupled with remote flame sense ($\boxed{26}$) to assure that the flame has carried across the entire length of the burner assembly. Gas supply can be routed from the side or up through the base.

Each furnace has the following safety devices to assure consistent and reliable operation after ignition:

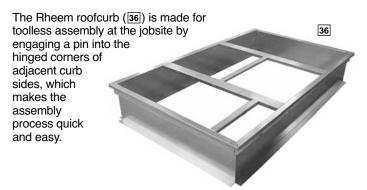

- Pressures switches (27) to assure adequate combustion airflow before ignition.
- Rollout switches (28) to assure no obstruction or cracks in the heat exchanger.

• A limit device that protects the furnace from over-temperature problems.

The compressor compartment houses the heartbeat of the unit. The scroll compressor (29) is known for its long life, and for reliable, quiet, and efficient operation. The suction and discharge lines are designed with shock loops (30) to absorb the strain and stress that the starting torque, steady state operation, and shut down cycle impose on the refrigerant tubing. Each compressor and circuit is independent for built-in redundancy, and



each circuit is clearly marked throughout the system. Each unit has two stages of efficient cooling operation, first stage is approximately 50% of second stage. (072 single stage)


Each unit comes standard with filter dryer 31. The condenser fan motor (32) can easily be accessed and maintained through the blower compartment. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit.

The outdoor coil uses the latest enhanced fin design (33) for the most effective method of heat transfer. The outdoor coil is protected by optional* louvered panels, which allow unobstructed airflow while protecting the unit from both Mother Nature and vandalism.

Each unit is designed for both downflow or horizontal applications (IM) for job configuration flexibility. The return air compartment can also contain an economizer (IM). Two models exits, one for downflow applications, and one for horizontal applications. Each unit is pre-wired for the economizer to allow quick

plug-in installation. The economizer is also available as a factory-installed option. The economizer, which provides free cooling when outdoor conditions are suitable and also provides fresh air to meet local requirements, comes standard with single enthalpy controls. The controls can be upgraded to dual enthalpy easily in the field. The direct drive actuator combined with gear drive dampers has eliminated the need for linkage adjustment in the field. The economizer control has a minimum position setpoint, an outdoor-air setpoint, a mix-air setpoint, and a CO₂ setpoint. Barometric relief is standard on all economizers. The wire harness to the economizer also has accommodations for a smoke detector.

SELECTION PROCEDURE EXAMPLE—SKNL- SERIES

To select an SKNL-B Cooling and Heating unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

1. DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example:	
Voltage-	380/415V- 3 Phase-50 Hz
Total Cooling Capacity—	89,000 BTUH [26.1 kW]
Sensible Cooling Capacity—	68,000 BTUH [19.9 kW]
Heating Capacity—	150,000 BTUH [43.9 kW]
*Condenser Entering Air—	95°F [35.0 °C] DB
*Evaporator Mixed Air Entering—	65°F [18.3 °C] WB
	78°F [25.6 °C] DB
*Indoor Air Flow (vertical)—	3000 CFM [1416 L/s]
*External Static Pressure –	0.40 in. WG [.10 kPa]

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

Since total cooling is within the range of a nominal 10 ton [35.1 kW] unit, enter cooling performance table at 95°F [35.0 °C] DB condenser inlet air. Interpolate between 63°F [17.2 °C] WB and 67°F [19.4 °C] WB to determine total and sensible capacity and power input for 65°F [18.3 °C] WB evaporator inlet air at 3300 CFM [1557 L/s] indoor air flow (table basis):

Total Cooling Capacity = 101,450 BTUH [29.71 kW] Sensible Cooling Capacity = 85,200 BTUH [24.95 kW] Power Input (Compressor and Cond. Fans) = 7,500 watts

Use formula in note (1) to determine sensible capacity at 78° F [25.6 °C] DB evaporator entering air:

Sensible Cooling Capacity = 78,303 BTUH [22.93 kW]

3. CORRECT CAPACITIES OF STEP 2 FOR ACTUAL AIR FLOW.

Select factors from airflow correction table at 3000 CFM [1416 L/s] and apply to data obtained in step 2 to obtain gross capacity:

Total Capacity = 101,450 x 0.97 = 98,407 BTUH [28.81 kW] Sensible Capacity = 78,303 x 0.93 = 72,822 BTUH [21.32 kW] Power Input = 7,500 x 0.99 = 7,425 Watts

These are Gross Capacities, not corrected for blower motor heat or power.

4. DETERMINE BLOWER SPEED AND WATTS TO MEET SYSTEM DESIGN.

Enter Indoor Blower performance table at 3000 CFM [1416 L/s]. Total ESP (external static pressure) per the spec of 0.40 in. WG [.10 kPa] includes the system duct and grilles. Add from the table 'Component Air Resistance', 0.06 in. WG [.01 kPa] for wet coil, 0 in. WG [.00 kPa] for downflow air flow, for a total selection static pressure of 0.46 (0.5) in. WG [.12 kPa], and determine:

 $\begin{array}{l} \mathsf{RPM} &= 706\\ \mathsf{WATTS} = 1,127\\ \mathsf{DRIVE} &= \mathsf{L} \mbox{ (Standard 3 H.P. motor)} \end{array}$

5. CALCULATE INDOOR BLOWER BTUH HEAT EFFECT FROM MOTOR WATTS, STEP 4.

1,217 x 3.412 = 3,845 BTUH [1.13 kW]

6. CALCULATE NET COOLING CAPACITIES, EQUAL TO GROSS CAPACITY, STEP 3, MINUS INDOOR BLOWER MOTOR HEAT.

Net Total Capacity = 98,407 - 3,845 = 94,562 BTUH [27.69 kW]

Net Sensible Capacity = 72,822 - 3,845 = 68,977 BTUH [20.20 kW]

7. CALCULATE UNIT INPUT AND JOB EER.

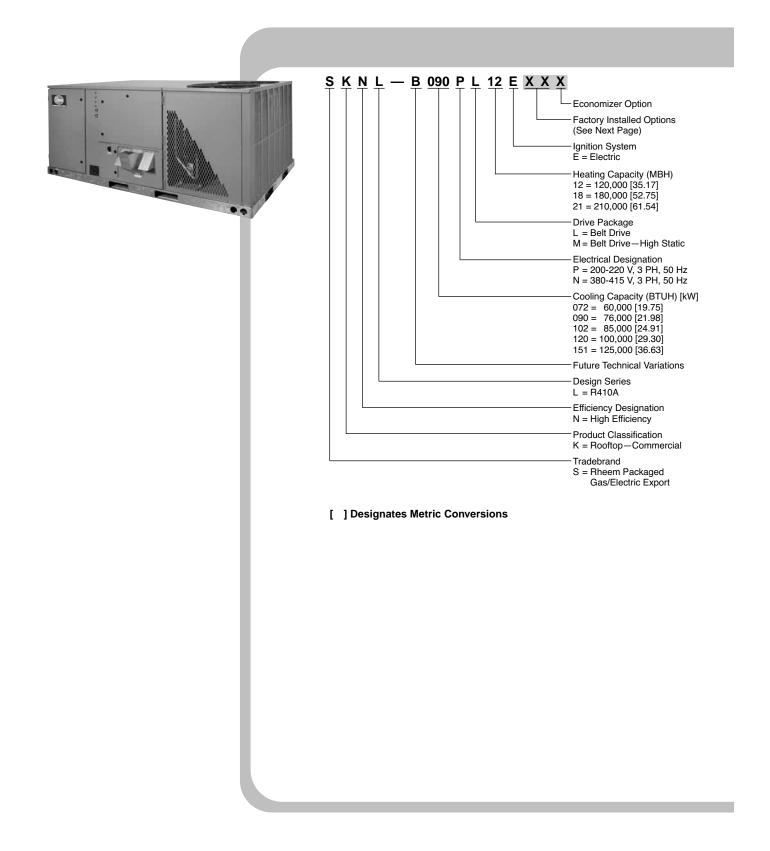
Total Power Input = 7,425 (step 3) + 1,127 (step 4) = 8,552 Watts

 $EER = \frac{\text{Net Total BTUH [kW] (step 6)}}{\text{Power Input, Watts (above)}} = \frac{94,562}{8,552} = 11.06$

8. SELECT UNIT HEATING CAPACITY.

From Physical Data Table read that gas heating output (input rating x efficiency) is:

Heating Capacity = 145,800 BTUH [42.7 kW]


9. CHOOSE MODEL

SKNL-B120NL18E

NOTE: *These operating conditions are typical of a commercial application in a 95°F/79°F [35°C/26°C] design area with indoor design of 76°F [24°C] DB and 50% RH and 10% ventilation air, with the unit roof mounted and centered on the zone it conditions by ducts.

MODEL IDENTIFICATION—SKNL- SERIES

FACTORY INSTALLED OPTION CODES FOR KNL (6 TO 12.5 TON) [21.1 TO 44.0 kW]

Option Code	Hail Guard	Stainless Steel Heat Exchanger	Non-Powered Convenience Outlet/Unfused Service Disconnect	Low Ambient/ Freeze Stat
AD	Х			
AJ		x		
AH			х	
AP				Х
BF	Х		X	
BG	Х	Х		
BY	Х			Х
JB		х	x	
CR	Х	Х		Х
DN	Х	Х	x	Х

NOTES: (1) High and low pressure is standard on all models.

"x" indicates factory installed option.

ECONOMIZER SELECTION FOR KNL (6 TO 12.5 TON) [21.1 TO 44.0 kW]

Option Code	No Economizer	Single Enthalpy Economizer w/Barometric Relief	Single Enthalpy Economizer w/Barometric Relief and Smoke Detector
A	Х		
В		Х	
С			Х

"x" indicates factory installed option.

Instructions for Factory Installed Option(s) Selection

- **Note:** Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.
- **Step 1.** After a basic rooftop model is selected, choose a *two-character* option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

Proceed to Step 2.

Step 2. The last option code character is utilized for factory-installed economizers. Choose a character from the FACTORY INSTALLED ECONOMIZER SELECTION TABLE.

Examples:

SKNL-B120NL18E	this unit has no factory installed options.
SKNL-B120NL18E BGA	this unit is equipped with <i>hail guard and stainless steel heat exchanger.</i>
SKNL-B120NL18EAHA	.this unit is equipped with a <u>non-powered convenience outlet</u> and <u>service disconnect.</u>
SKNL-B120NL18EAHB	this unit is equipped as above and includes an <u>Economizer</u> . with single enthalpy sensor and with barometric relief.
SKNL-B120NL18EAAB	this unit is equipped with an <i>Economizer with single enthalpy sensor and Barometric Relief.</i>

Model SKNL- Series	B072NL12	B072NM12	B072PL12	B090NL12E
Cooling Performance ¹				
Gross Cooling Capacity Btu [kW]	60,500 [17.73]	60,500 [17.73]	60,500 [17.73]	79,000 [23.15]
EER/SEER ²	11.5/NA	11.5/NA	11.5/NA	11.2/NA
Nominal CFM/AHRI Rated CFM [L/s]	1900 [897]	1900 [897]	1900 [897]	2300 [1085]
AHRI Net Cooling Capacity Btu [kW]	58,000 [16.99]	58,000 [16.99]	58,000 [16.99]	76,000 [22.27]
Net Sensible Capacity Btu [kW]	43,400 [12.72]	43,400 [12.72]	43,400 [12.72]	54,100 [15.85]
Net Latent Capacity Btu [kW]	14,600 [4.28]	14,600 [4.28]	14,600 [4.28]	21,900 [6.42]
Net System Power kW	4.96	4.96	4.96	6.64
leating Performance (Gas) ³				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	60,000/120,000 [17.58/35.16]	60,000/120,000 [17.58/35.16]	60,000/120,000 [17.58/35.16]	60,000/120,000 [17.58/35.1
Heating Output Btu [kW] (1st Stage / 2nd Stage)	48,600/97,200 [14.24/28.48]	48,600/97,200 [14.24/28.48]	48,600/97,200 [14.24/28.48]	48,600/97,200 [14.24/28.48
Temperature Rise Range °F [°C]	30-60 [16.7/33.3]	30-60 [16.7/33.3]	30-60 [16.7/33.3]	25-55 [13.9/30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	6	6	6	6
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.5 [12.7]	0.5 [12.7]	0.5 [12.7]	0.5 [12.7]
Compressor				
No./Type	1/Scroll	1/Scroll	1/Scroll	2/Scroll
utdoor Sound Rating (dB)4	88	88	88	88
lutdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	27 [2.51]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	Orifices	Orifices	Orifices	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Dutdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	6667 [3146]	6665 [3145]	6665 [3145]	6665 [3145]
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
Motor RPM	895	895	895	895
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/11x12 [279x305]	1/11x12 [279x305]	1/11x12 [279x305]	1/15x15 [381x381]
Drive Type/No. Speeds	Belt/Variable	Belt/Variable	Belt/Variable	Belt/Variable
No. Motors	1	1	1	1
Motor HP	1 1/2	1 1/2	1 1/2	3
Motor RPM	1440	1440	1140	1440
Motor Frame Size	56	56	56	56
ilter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(No.) Size Recommended in. [mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. [g]	120 [3402]	120 [3402]	120 [3402]	107.5/110.7 [3048/3138]
Veights	-	-	-	
Net Weight Ibs. [kg]	901 [409]	901 [409]	901 [409]	1025 [465]

See Page 18 for Notes.

B090NL18E	B090NM12E	B090NM18E	B090PL12E
			CONTINUED
79,000 [23.15]	79,000 [23.15]	79,000 [23.15]	79,000 [23.15]
11.2/NA	11.2/NA	11.2/NA	11.2/NA
2300 [1085]	2300 [1085]	2300 [1085]	2300 [1085]
76,000 [22.27]	76,000 [22.27]	76,000 [22.27]	76,000 [22.27]
			54,100 [15.85]
21,900 [6.42]		21,900 [6.42]	21,900 [6.42]
6.64	6.64	6.64	6.64
90,000/180,000 [26.37/52.74]	60,000/120,000 [17.58/35.16]	90,000/180,000 [26.37/52.74]	60,000/120,000 [17.58/35.16
72,900/145,800 [21.36/42.72]	48,600/97,200 [14.24/28.48]	72,900/145,800 [21.36/42.72]	48,600/97,200 [14.24/28.48
40-70 [22.2/38.9]			25-55 [13.9/30.6]
		81	81
	6	9	6
2	2	2	2
0.75 [19]	0.5 [12.7]	0.75 [19]	0.5 [12.7]
2/Scroll	2/Scroll	2/Scroll	2/Scroll
88	88	88	88
Louvered	Louvered	Louvered	Louvered
			Rifled
			0.375 [9.5]
			27 [2.51]
			1 / 22 [9]
			Louvered
Rifled	Rifled	Rifled	Rifled
0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
			13.5 [1.25]
			2 / 18 [7]
			TX Valves
			1/1 [25.4]
Propeller	Propeller	Propeller	Propeller
2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Direct/1	Direct/1	Direct/1	Direct/1
6665 [3145]	6665 [3145]	6665 [3145]	6665 [3145]
	2 at 1/3 HP		2 at 1/3 HP
895	895	895	895
FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
		1/15x15 [381x381]	1/15x15 [381x381]
Belt/Variable	Belt/Variable	Belt/Variable	Belt/Variable
1	1	1	1
3	3	3	3
1440	1440	1440	1440
56	56	56	56
Disposable	Disposable	Disposable	Disposable
Yes	Yes	Yes	Yes
			(6)2x18x18 [51x457x457]
107.5/110.7 [3048/3138]	107.5/110.7 [3048/3138]	107.5/110.7 [3048/3138]	107.5/110.7 [3048/3138]
1061 [481]	1025 [465]	1061 [481]	1025 [465]
	79,000 [23.15] 11.2/NA 2300 [1085] 76,000 [22.27] 54,100 [15.85] 21,900 [6.42] 6.64 90,000/180,000 [26.37/52.74] 72,900/145,800 [21.36/42.72] 40-70 [22.2/38.9] 81 9 2 0.75 [19] 2/Scroll 88 Louvered Rifled 0.375 [9.5] 27 [2.51] 1 / 22 [9] Louvered Rifled 0.375 [9.5] 13.5 [1.25] 2 / 18 [7] TX Valves 1/1 [25.4] Propeller 2/24 [609.6] Direct/1 6665 [3145] 2 at 1/3 HP 895 FC Centrifugal 1/15x15 [381x381] Belt/Variable 1 3 1440 56 Disposable Yes (6)2x18x18 [51x457x457]	79,000 [23.15] 79,000 [23.15] 11.2/NA 11.2/NA 2300 [1085] 2300 [1085] 76,000 [22.27] 76,000 [22.27] 54,100 [15.85] 54,100 [15.85] 21,900 [6.42] 21,900 [6.42] 6.64 6.64 90,000/180,000 [26.37/52.74] 60,000/120,000 [17.58/35.16] 72,900/145.800 [21.36/42.72] 48,600/97.200 [14.24/28.48] 40-70 [22.2/38.9] 25-55 [13.9/30.6] 72,900/145.800 [21.36/42.72] 48,600/97.200 [14.24/28.48] 40-70 [22.2/38.9] 25-55 [13.9/30.6] 72,900/145.800 [21.36/42.72] 48,600/97.200 [14.24/28.48] 40-70 [22.2/38.9] 25-55 [13.9/30.6] 81 81 81 9 6 2 2 2 2 0.75 [19] 0.5 [12.7] 2/Scroll 2/Scroll 2/Scroll 88 88 88 80 30 3 1.22 [9] 1/22 [9] 1/22 [9] 1.02 [25] 2.7 [2.51] 2.7 [2.51] 1.35 [1.25]	79,000 [23.15] 79,000 [23.15] 79,000 [23.15] 11.2/NA 11.2/NA 11.2/NA 2300 [1085] 2300 [1085] 2300 [1085] 76,000 [22.27] 76,000 [22.27] 76,000 [22.27] 54,100 [15.85] 54,100 [15.85] 54,100 [15.85] 21,900 [6.42] 21,900 [6.42] 21,900 [6.42] 6.64 6.64 6.64 90,000/180,000 [26.37/52.74] 60,000/120,000 [17.58/35.16] 90,000/180,000 [26.37/52.74] 72,900/145,800 [21.36/42.72] 48,600/97.200 [14.24/28.48] 72,900/145,800 [21.36/42.72] 40-70 [22.2/38.9] 25-55 [13.9/30.6] 40-70 [22.2/38.9] 81 81 81 9 6 9 2 2 2 0.75 [19] 0.5 [12.7] 0.75 [19] 2/Scroll 2/Scroll 2/Scroll 88 88 88 Louvered Rifled Rifled 81 11/22 [9] 1/22 [9] 1 122 [9] 1/22 [9] 2/Scroll 2.0375 [9.5] 0.375

See Page 18 for Notes.

Model SKNL- Series	B090PL18E	B102NL12E	B102NL18E	B102NM12E
Cooling Performance ¹				CONTINUED>
Gross Cooling Capacity Btu [kW]	79,000 [23.15]	91,000 [26.66]	91,000 [26.66]	91,000 [26.66]
EER/SEER ²	11.2/NA	11.8/NA	11.8/NA	11.8/NA
Nominal CFM/AHRI Rated CFM [L/s]	2300 [1085]	2650 [1251]	2650 [1251]	2650 [1251]
AHRI Net Cooling Capacity Btu [kW]	76,000 [22.27]	88,000 [25.78]	88,000 [25.78]	88,000 [25.78]
Net Sensible Capacity Btu [kW]	54,100 [15.85]	64,800 [18.99]	64,800 [18.99]	64,800 [18.99]
Net Latent Capacity Btu [kW]	21,900 [6.42]	23,200 [6.8]	23,200 [6.8]	23,200 [6.8]
Net System Power kW	6.64	7.43	7.43	7.43
Heating Performance (Gas) ³				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	90,000/180,000 [26.37/52.74]	60,000/120,000 [17.58/35.16]	90,000/180,000 [26.37/52.74]	60,000/120,000 [17.58/35.16
Heating Output Btu [kW] (1st Stage / 2nd Stage)	72,900/145,800 [21.36/42.72]	48,600/97,200 [14.24/28.48]	72,900/145,800 [21.36/42.72]	486,000/972,000 [142.4/284.79
Temperature Rise Range °F [°C]	40-70 [22.2/38.9]	25-55 [13.9/30.6]	40-70 [22.2/38.9]	25-55 [13.9/30.6]
Steady State Efficiency (%)	81	81	81	81
No. Burners	9	6	9	6
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.5 [12.7]	0.75 [19]	0.5 [12.7]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Outdoor Sound Rating (dB) ⁴	88	88	88	88
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	1 / 22 [9]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	2 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	6665 [3145]	6665 [3145]	6665 [3145]	6665 [3145]
No. Motors/HP	2 at 1/3 HP			
Motor RPM	895	895	895	895
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type/No. Speeds	Belt/Variable	Belt/Variable	Belt/Variable	Belt/Variable
No. Motors	1	1	1	1
Motor HP	3	3	3	3
Motor RPM	1440	1440	1440	1440
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(No.) Size Recommended in. [mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. [g]	107.5/110.7 [3048/3138]	154.4/166.6 [4377/4723]	154.4/166.6 [4377/4723]	154.4/166.6 [4377/4723]
Weights				
-			1100 [500]	
Net Weight Ibs. [kg]	1061 [481]	1067 [484]	1103 [500]	1067 [484]

See Page 18 for Notes.

B102NM18E	B102PL12E	B102PL18E	B120NL12E
			CONTINUED
91,000 [26.66]	91,000 [26.66]	91,000 [26.66]	103,000 [30.18]
11.8/NA	11.8/NA	11.8/NA	11.2/NA
2650 [1251]	2650 [1251]	2650 [1251]	3300 [1557]
88,000 [25.78]	88,000 [25.78]	88,000 [25.78]	99,000 [29.01]
64,800 [18.99]	64,800 [18.99]	64,800 [18.99]	75,400 [22.09]
23,200 [6.8]	23,200 [6.8]	23,200 [6.8]	23,600 [6.91]
7.43	7.43	7.43	8.82
90,000/180,000 [26.37/52.74]	60,000/120,000 [17.58/35.16]	90,000/180,000 [26.37/52.74]	60,000/120,000 [17.58/35.16
72,900/145,800 [21.36/42.72]	48,600/97,200 [14.24/28.48]	72,900/145,800 [21.36/42.72]	48,600/97,200 [14.24/28.48]
40-70 [22.2/38.9]	25-55 [13.9/30.6]	40-70 [22.2/38.9]	15-45 [8.3/25]
81	81	81	81
9	6	9	6
2	2	2	2
0.75 [19]	0.5 [12.7]	0.75 [19]	0.5 [12.7]
2/Scroll	2/Scroll	2/Scroll	2/Scroll
88	88	88	88
Louvered	Louvered	Louvered	Louvered
Rifled	Rifled	Rifled	Rifled
0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
			27 [2.51]
			2 / 22 [9]
Louvered			Louvered
Rifled	Rifled	Rifled	Rifled
0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
2 / 18 [7]	2 / 18 [7]	2 / 18 [7]	3 / 18 [7]
TX Valves	TX Valves	TX Valves	TX Valves
1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Propeller	Propeller	Propeller	Propeller
2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Direct/1	Direct/1	Direct/1	Direct/1
6665 [3145]	6665 [3145]	6665 [3145]	6665 [3145]
2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
895	895	895	895
FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Belt/Variable	Belt/Variable	Belt/Variable	Belt/Variable
1	1	1	1
3	3	3	3
1440	1440	1440	1440
56	56	56	56
Disposable	Disposable	Disposable	Disposable
Yes	Yes	Yes	Yes
			(6)2x18x18 [51x457x457]
154.4/166.6 [4377/4723]	154.4/166.6 [4377/4723]	154.4/166.6 [4377/4723]	172.8/180.8 [4899/5126]
1103 [500]	1067 [484]	1103 [500]	1120 [508]
	91,000 [26.66] 11.8/NA 2650 [1251] 88,000 [25.78] 64,800 [18.99] 23,200 [6.8] 7.43 90,000/180,000 [26.37/52.74] 72,900/145,800 [21.36/42.72] 40-70 [22.2/38.9] 81 9 2 0.75 [19] 2 2/Scroll 2/Scroll 2/Scroll 2/Scroll 2/Scroll 2/Scroll 2/Scroll 2/Scroll 2/Scroll 2/Scroll 2/Scroll 2/Scroll 1/15[19] 2/18 1/1 2/18 1/1 2/18 1/1 2/18 1/1 2/18 1/1 2/18 1/1 2/18 1/1 2/18 1/1 2/18 1/1 2/18 1/1 2/18 1/1 2/18 1/1 2/18 1/1 2/18 1/1 2/18 1/1 2/24 1/1 2/24 1/1 2/24 1/1 3 1/1 3 1/1 3 1/40 56 Disposable Yes (6)2x18x18 [51x457x457]	91,000 [26.66] 91,000 [26.66] 11.8/NA 11.8/NA 2650 [1251] 2650 [1251] 88,000 [25.78] 88,000 [25.78] 64,800 [18.99] 64,800 [18.99] 23,200 [6.8] 23,200 [6.8] 7.43 7.43 90,000/180,000 [26.37/52.74] 60,000/120,000 [17.58/35.16] 72,900/145,800 [21.36/42.72] 48,600/97.200 [14.24/28.48] 40-70 [22.2/38.9] 25-55 [13.9/30.6] 81 81 9 6 2 2 0.75 [19] 0.5 [12.7] 2/Scroll 2/Scroll 2/Scroll 2/Scroll 88 88 Louvered Louvered Rifled Rifled Rifled Rifled 0.375 [9.5] 0.375 [9.5] 13.5 [1.25] 13.5 [1.25] 2 / 18 [7] 2 / 18 [7] X laves TX Valves 11/1 [25.4] 1/1 [25.4] Propeller Propeller 2/24 [609.6] 2/24 [609.6]	91,000 [26.66] 91,000 [26.66] 91,000 [26.66] 11.8/NA 11.8/NA 11.8/NA 2650 [1251] 2650 [1251] 2650 [1251] 80,000 [25.78] 88,000 [25.78] 88,000 [25.78] 64,800 [18.99] 64,800 [18.99] 64,800 [18.99] 23.200 [6.8] 23.200 [6.8] 23.200 [6.8] 7.43 7.43 7.43 90,000/180,000 [26.37/52.74] 60,000/120,000 [17.58/35.16] 90,000/180,000 [26.37/52.74] 72,900/145,800 [21.36/42.72] 48,600/97,200 [14.24/28.48] 72,900/145,800 [21.36/42.72] 40-70 [22.27.8.9] 25-55 [13.9/30.6] 40-70 [22.27.8.9] 81 81 81 9 6 9 2 2 2 0.75 [19] 0.5 [12.7] 0.75 [19] 2/Scroll 2/Scroll 2/Scroll 88 88 88 Louvered Louvered Louvered Rifled Rifled Rifled 0.375 [9.5] 0.375 [9.5] 0.375 [9.5] 13.5 [1.25] 13.5 [1.25]

See Page 18 for Notes.

Model SKNL- Series	B120NL18E	B120NM12E	B120NM18E	B120PL12E
Cooling Performance ¹				CONTINUED>
Gross Cooling Capacity Btu [kW]	103,000 [30.18]	103,000 [30.18]	103,000 [30.18]	103,000 [30.18]
EER/SEER ²	11.2/NA	11.2/NA	11.2/NA	11.2/NA
Nominal CFM/AHRI Rated CFM [L/s]	3300 [1557]	3300 [1557]	3300 [1557]	3300 [1557]
AHRI Net Cooling Capacity Btu [kW]	99,000 [29.01]	99,000 [29.01]	99,000 [29.01]	99,000 [29.01]
Net Sensible Capacity Btu [kW]	75,400 [22.09]	75,400 [22.09]	75,400 [22.09]	75,400 [22.09]
Net Latent Capacity Btu [kW]	23,600 [6.91]	23,600 [6.91]	23,600 [6.91]	23,600 [6.91]
Net System Power kW	8.82	8.82	8.82	8.82
Heating Performance (Gas) ³				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	90,000/180,000 [26.37/52.74]	60,000/120,000 [17.58/35.16]	90,000/180,000 [26.37/52.74]	60,000/120,000 [17.58/35.16
Heating Output Btu [kW] (1st Stage / 2nd Stage)	72,900/145,800 [21.36/42.72]	48,600/97,200 [14.24/28.48]	72,900/145,800 [21.36/42.72]	486,000/972,000 [142.4/284.7
Temperature Rise Range °F [°C]	25-55 [13.9/30.6]	15-45 [8.3/25]	25-55 [13.9/30.6]	15-45 [8.3/25]
Steady State Efficiency (%)	81	81	81	81
No. Burners	9	6	9	9
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.5 [12.7]	0.75 [19]	0.75 [19]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Dutdoor Sound Rating (dB) ⁴	88	88	88	88
Dutdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	3 / 18 [7]	3 / 18 [7]	3 / 18 [7]	3 / 18 [7]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Dutdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	6665 [3145]	6665 [3145]	6665 [3145]	6665 [3145]
No. Motors/HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP	2 at 1/3 HP
Motor RPM	895	895	895	895
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type/No. Speeds	Belt/Variable	Belt/Variable	Belt/Variable	Belt/Variable
No. Motors	1	1	1	1
Motor HP	3	3	3	3
Motor RPM	1440	1440	1440	1440
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(No.) Size Recommended in. [mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. [g]	172.8/180.8 [4899/5126]	172.8/180.8 [4899/5126]	172.8/180.8 [4899/5126]	172.8/180.8 [4899/5126]
Weights	· · · · · · · · · · · · · · · · · · ·	[· · · · · ·]	· · · · · · · · · · · · · · · · · · ·	. []
Net Weight Ibs. [kg]	1156 [524]	1120 [508]	1156 [524]	1120 [508]
Ship Weight Ibs. [kg]	1193 [541]	1157 [525]	1193 [541]	1157 [525]
See Page 18 for Notes		[020]		

See Page 18 for Notes.

Model SKNL- Series	B120PL18E	B151NL12E	B151NL21E	B151NM12E
Cooling Performance ¹				CONTINUED
Gross Cooling Capacity Btu [kW]	103,000 [30.18]	130,000 [38.09]	130,000 [38.09]	130,000 [38.09]
EER/SEER ²	11.2/NA	11.4/NA	11.4/NA	11.4/NA
Nominal CFM/AHRI Rated CFM [L/s]	3300 [1557]	3500 [1652]	3500 [1652]	3500 [1652]
AHRI Net Cooling Capacity Btu [kW]	99,000 [29.01]	126,000 [36.92]	126,000 [36.92]	126,000 [36.92]
Net Sensible Capacity Btu [kW]	75,400 [22.09]	89,100 [26.11]	89,100 [26.11]	89,100 [26.11]
Net Latent Capacity Btu [kW]	23,600 [6.91]	36,900 [10.81]	36,900 [10.81]	36,900 [10.81]
Net System Power kW	8.82	11.11	11.11	11.11
leating Performance (Gas) ³				
Heating Input Btu [kW] (1st Stage / 2nd Stage)	90,000/180,000 [26.37/52.74]	60,000/120,000 [17.58/35.16]	105,000/210,000 [30.76/61.53]	60,000/120,000 [17.58/35.1
Heating Output Btu [kW] (1st Stage / 2nd Stage)	72,900/145,800 [21.36/42.72]	48,600/97,200 [14.24/28.48]	85,000/170,000 [24.9/49.81]	48,600/97,200 [14.24/28.48
Temperature Rise Range °F [°C]	25-55 [13.9/30.6]	15-45 [8.3-25] / 15-45 [8.3-25] 25-55 [13.9-30.6] / 25-55 [13.9-30.6]	15-45 [8.3-25] / 15-45 [8.3-2
Steady State Efficiency (%)	81	81	81	81
No. Burners	9	6	9	6
No. Stages	2	2	2	2
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.5 [12.7]	0.75 [19]	0.5 [12.7]
Compressor				
No./Type	2/Scroll	2/Scroll	2/Scroll	2/Scroll
Dutdoor Sound Rating (dB) ⁴	88	88	88	88
Dutdoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	MicroChannel	MicroChannel	MicroChannel
Tube Size in. [mm] OD	0.375 [9.5]	1 [25.4]	1 [25.4]	1 [25.4]
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	27 [2.51]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 23 [9]	2 / 23 [9]	2 / 23 [9]
ndoor Coil—Fin Type	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]
Rows / FPI [FPcm]	3 / 18 [7]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]
Dutdoor Fan—Type	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	6665 [3145]	8000 [3775]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/2 HP	2 at 1/2 HP	2 at 1/2 HP
Motor RPM	895	895	895	895
ndoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]
Drive Type/No. Speeds	Belt/Variable	Belt/Variable	Belt/Variable	Belt/Variable
No. Motors	1	1	1	1
Motor HP	3	5.0	5.0	5.0
Motor RPM	1440	1440	1440	1440
Motor Frame Size	56	56	56	56
Filter—Type	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes
(No.) Size Recommended in. [mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	172.8/180.8 [4899/5126]	147.2/152 [4173/4309]	147.2/152 [4173/4309]	147.2/152 [4173/4309]
Weights				
Net Weight Ibs. [kg]	1156 [524]	1238 [562]	1274 [578]	1238 [562]
Ship Weight Ibs. [kg]	1193 [541]	1275 [578]	1311 [575]	1275 [578]

See Page 18 for Notes.

Model SKNL- Series	B151NM21E	B151PL12E	B151PL21E	
Cooling Performance ¹				
Gross Cooling Capacity Btu [kW]	130,000 [38.09]	130,000 [38.09]	130,000 [38.09]	
EER/SEER ²	11.4/NA	11.4/NA	11.4/NA	
Nominal CFM/AHRI Rated CFM [L/s]	3500 [1652]	3500 [1652]	3500 [1652]	
AHRI Net Cooling Capacity Btu [kW]	126,000 [36.92]	126,000 [36.92]	126,000 [36.92]	
Net Sensible Capacity Btu [kW]	89,100 [26.11]	89,100 [26.11]	89,100 [26.11]	
Net Latent Capacity Btu [kW]	36,900 [10.81]	36,900 [10.81]	36,900 [10.81]	
Net System Power kW	11.11	11.11	11.11	
Heating Performance (Gas) ³	11.11	11.11	11.11	
Heating Input Btu [kW] (1st Stage / 2nd Stage)	105 000/210 000 [20 76/61 52]	60,000/120,000 [17.58/35.16]	105 000/210 000 [20 76/61 52]	
Heating Output Btu [kW] (1st Stage / 2nd Stage) Heating Output Btu [kW] (1st Stage / 2nd Stage)				
		48,600/97,200 [14.24/28.48]		
Temperature Rise Range °F [°C]] 15-45 [8.3-25] / 15-45 [8.3-25]		
Steady State Efficiency (%)	81	81	81	
No. Burners	9	9	9	
No. Stages	2	2	2	
Gas Connection Pipe Size in. [mm]	0.75 [19]	0.75 [19]	0.75 [19]	
Compressor				
No./Туре	2/Scroll	2/Scroll	2/Scroll	
Outdoor Sound Rating (dB) ⁴	88	88	88	
Outdoor Coil—Fin Type	Louvered	Louvered	Louvered	
Tube Type	MicroChannel	MicroChannel	MicroChannel	
Tube Size in. [mm] OD	1 [25.4]	1 [25.4]	1 [25.4]	
Face Area sq. ft. [sq. m]	27 [2.51]	27 [2.51]	27 [2.51]	
Rows / FPI [FPcm]	2 / 23 [9]	2 / 23 [9]	2 / 23 [9]	
Indoor Coil—Fin Type	Louvered	Louvered	Louvered	
Tube Type	Rifled	Rifled	Rifled	
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	
Face Area sq. ft. [sq. m]	13.5 [1.25]	13.5 [1.25]	13.5 [1.25]	
Rows / FPI [FPcm]	4 / 15 [6]	4 / 15 [6]	4 / 15 [6]	
Refrigerant Control				
•	TX Valves	TX Valves	TX Valves	
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]	1/1 [25.4]	
Outdoor Fan—Type	Propeller	Propeller	Propeller	
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]	2/24 [609.6]	
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	
CFM [L/s]	8000 [3775]	8000 [3775]	8000 [3775]	
No. Motors/HP	2 at 1/2 HP	2 at 1/2 HP	2 at 1/2 HP	
Motor RPM	895	895	895	
Indoor Fan—Type	FC Centrifugal	FC Centrifugal	FC Centrifugal	
No. Used/Diameter in. [mm]	1/15x15 [381x381]	1/15x15 [381x381]	1/15x15 [381x381]	
Drive Type/No. Speeds	Belt/Variable	Belt/Variable	Belt/Variable	
No. Motors	1	1	1	
Motor HP	5.0	5.0	5.0	
Motor RPM	1440	1440	1440	
Motor Frame Size	56	56	56	
Filter—Type	Disposable	Disposable	Disposable	
Furnished	Yes	Yes	Yes	
(No.) Size Recommended in. [mm]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	(6)2x18x18 [51x457x457]	
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	147.2/152 [4173/4309]	147.2/152 [4173/4309]	147.2/152 [4173/4309]	
Weights				
•	1074 [670]	1000 [560]	1974 [579]	
Net Weight Ibs. [kg]	1274 [578]	1238 [562]	1274 [578]	
Ship Weight Ibs. [kg]	1311 [575]	1275 [578]	1311 [575]	

See Page 18 for Notes.

GENERAL DATA—SKNL- SERIES

NOTES:

- Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 340/360.
- 2. EER and/or SEER are rated at AHRI conditions and in accordance with DOE test procedures.
- 3. Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standard Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level.
- 4. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

				ITERING INDOC)R AIR @ 80°F	[26.7°C] dbE (1)			
	wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
										1620 [765]
		0.02	0.07	0.1	0.02	0.07	0.1	0.02	0.07	0.1
75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	81.6 [23.9] 71.6 [21.0] 3.6	77.9 [22.8] 60.1 [17.6] 3.5	75.8 [22.2] 54.0 [17.6] 3.4	77.5 [22.7] 77.5 [22.7] 3.5	73.9 [21.7] 68.2 [20.0] 3.5	71.9 [21.1] 61.6 [20.0] 3.4	73.2 [21.4] 73.2 [21.4] 3.5	69.8 [20.5] 69.8 [20.5] 3.4	67.9 [19.9] 66.2 [19.9] 3.4
80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	78.1 [22.9] 63.7 [18.7] 3.7	74.6 [21.9] 53.2 [15.6] 3.7	72.6 [21.3] 47.7 [15.6] 3.6	74.0 [21.7] 72.6 [21.3] 3.7	70.6 [20.7] 61.3 [18.0] 3.6	68.7 [20.1] 55.3 [18.0] 3.6	69.7 [20.4] 69.7 [20.4] 3.7	66.5 [19.5] 66.1 [19.4] 3.6	64.7 [19.0] 59.9 [19.0] 3.6
85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	74.6 [21.9] 56.7 [16.6] 3.9	71.2 [20.9] 47.1 [13.8] 3.9	69.3 [20.3] 42.1 [13.8] 3.8	70.4 [20.6] 65.6 [19.2] 3.9	67.2 [19.7] 55.2 [16.2] 3.8	65.4 [19.2] 49.7 [16.2] 3.8	66.1 [19.4] 66.1 [19.4] 3.9	63.1 [18.5] 60.0 [17.6] 3.8	61.4 [18.0] 54.3 [17.6] 3.8
90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	71.1 [20.8] 50.9 [14.9] 4.2	67.8 [19.9] 42.0 [12.3] 4.1	66.0 [19.3] 37.4 [12.3] 4.0	66.9 [19.6] 59.7 [17.5] 4.1	63.8 [18.7] 50.1 [14.7] 4.0	62.1 [18.2] 45.1 [14.7] 4.0	62.6 [18.3] 62.6 [18.3] 4.1	59.7 [17.5] 54.8 [16.1] 4.0	58.1 [17.0] 49.5 [16.1] 4.0
95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	67.5 [19.8] 45.8 [13.4] 4.4	64.4 [18.9] 37.7 [11.0] 4.3	62.7 [18.4] 33.5 [11.0] 4.2	63.3 [18.5] 54.7 [16.0] 4.4	60.4 [17.7] 45.8 [13.4] 4.3	58.8 [17.2] 41.2 [13.4] 4.2	59.0 [17.3] 59.0 [17.3] 4.3	56.3 [16.5] 50.6 [14.8] 4.2	54.8 [16.1] 45.7 [14.8] 4.2
100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	63.9 [18.7] 41.8 [12.2] 4.6	60.9 [17.8] 34.2 [10.0] 4.5	59.3 [17.4] 30.4 [10.0] 4.5	59.7 [17.5] 50.6 [14.8] 4.6	57.0 [16.7] 42.4 [12.4] 4.5	55.4 [16.2] 38.0 [12.4] 4.4	55.4 [16.2] 55.4 [16.2] 4.6	52.9 [15.5] 47.2 [13.8] 4.5	51.4 [15.1] 42.6 [13.8] 4.4
105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	60.2 [17.6] 38.7 [11.3] 4.9	57.5 [16.8] 31.8 [9.3] 4.8	55.9 [16.4] 28.1 [9.3] 4.7	56.0 [16.4] 47.6 [13.9] 4.8	53.5 [15.7] 39.9 [11.7] 4.7	52.0 [15.2] 35.8 [11.7] 4.7	51.7 [15.1] 51.7 [15.1] 4.8	49.4 [14.5] 44.6 [13.1] 4.7	48.0 [14.1] 40.2 [13.1] 4.6
110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	56.5 [16.6] 36.6 [10.7] 5.1	53.9 [15.8] 30.0 [8.8] 5.0	52.5 [15.4] 26.6 [8.8] 5.0	52.3 [15.3] 45.5 [13.3] 5.1	49.9 [14.6] 38.1 [11.2] 5.0	48.6 [14.2] 34.3 [11.2] 4.9	48.0 [14.1] 48.0 [14.1] 5.1	45.8 [13.4] 42.9 [12.6] 5.0	44.6 [13.1] 38.8 [12.6] 4.9
115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	52.8 [15.5] 35.6 [10.4] 5.4	50.4 [14.8] 29.3 [8.6] 5.3	49.0 [14.4] 26.0 [8.6] 5.2	48.6 [14.2] 44.5 [13.0] 5.4	46.4 [13.6] 37.4 [11.0] 5.3	45.2 [13.2] 33.7 [11.0] 5.2	44.3 [13.0] 44.3 [13.0] 5.4	42.3 [12.4] 42.1 [12.3] 5.2	41.2 [12.1] 38.2 [12.1] 5.2
120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	49.0 [14.4] 35.4 [10.4] 5.7	46.8 [13.7] 29.3 [8.6] 5.6	45.6 [13.4] 26.2 [8.6] 5.5	44.9 [13.2] 44.4 [13.0] 5.7	42.8 [12.5] 37.4 [11.0] 5.5	41.7 [12.2] 33.8 [11.0] 5.5	40.6 [11.9] 40.6 [11.9] 5.6	38.7 [11.3] 38.7 [11.3] 5.5	37.7 [11.0] 37.7 [11.0] 5.4
	75 [23.9] 80 [26.7] 85 [29.4] 90 [32.2] 95 [35] 100 [37.8] 105 [40.6] 110 [43.3] 115 [46.1] 120	CFM [L/s] DR ☉ Total BTUH [kW] [23.9] Total BTUH [kW] Sens BTUH [kW] Power 80 [26.7] Total BTUH [kW] Sens BTUH [kW] Power 85 Total BTUH [kW] [29.4] Power 90 Total BTUH [kW] Sens BTUH [kW] Power 90 122.2] Power 95 [35] Power 95 [35] Power 100 [37.8] Power 100 [37.8] Power 105 Sens BTUH [kW] Power 105 [40.6] Power 110 Total BTUH [kW] Power 110 [46.1] Power	CFM [L/s] 2400 [1133] DR ① 0.02 75 Total BTUH [kW] 81.6 [23.9] [23.9] Power 3.6 80 Total BTUH [kW] 78.1 [22.9] [26.7] Power 3.7 85 Total BTUH [kW] 74.6 [21.9] [29.4] Power 3.7 85 Total BTUH [kW] 74.6 [21.9] [29.4] Sens BTUH [kW] 56.7 [16.6] Power 3.9 90 [32.2] Power 4.2 95 Total BTUH [kW] 50.9 [14.9] Power 4.2 95 Total BTUH [kW] 63.9 [18.7] [35] Power 4.4 100 Total BTUH [kW] 63.9 [18.7] [37.8] Power 4.6 101 Total BTUH [kW] 63.5 [16.6] [37.8] Power 4.6 105 Sens BTUH [kW] 56.5 [16.6] [40.6] Power 5.1 110 Total BTU	wbE 71°F [21.7°C] CFM [L/s] 2400 [1133] 1900 [897] DR ① 0.02 0.07 75 Total BTUH [kW] 81.6 [23.9] 77.9 [22.8] [23.9] Sens BTUH [kW] 71.6 [21.0] 60.1 [17.6] Power 3.6 3.5 80 Total BTUH [kW] 78.1 [22.9] 74.6 [21.9] [26.7] Sens BTUH [kW] 63.7 [18.7] 53.2 [15.6] Power 3.7 3.7 85 Total BTUH [kW] 74.6 [21.9] 71.2 [20.9] [29.4] Sens BTUH [kW] 74.6 [21.9] 71.2 [20.9] Power 3.9 3.9 3.9 90 Sens BTUH [kW] 50.9 [14.9] 42.0 [12.3] Power 4.2 4.1 95 Total BTUH [kW] 63.9 [18.7] 60.9 [17.8] [35] Power 4.4 4.3 100 Total BTUH [kW] 63.9 [18.7] 60.9 [17.8] [37.8] Power 4.6 4.5 105	wbE 71°F [21.7°C] CFM [L/s] 2400 [1133] 1900 [897] 1620 [765] DR 0 0.02 0.07 0.1 75 Total BTUH [kW] 81.6 [23.9] 77.9 [22.8] 75.8 [22.2] 73 Sens BTUH [kW] 71.6 [21.0] 60.1 [17.6] 54.0 [17.6] 80 Total BTUH [kW] 78.1 [22.9] 74.6 [21.9] 72.6 [21.3] 80 Total BTUH [kW] 63.7 [18.7] 53.2 [15.6] 47.7 [15.6] 90 Sens BTUH [kW] 63.7 [16.6] 47.1 [13.8] 42.1 [13.8] 90 Total BTUH [kW] 56.7 [16.6] 47.1 [13.8] 42.1 [13.8] 90 Total BTUH [kW] 71.1 [20.8] 67.8 [19.9] 66.0 [19.3] 91 Total BTUH [kW] 50.9 [14.9] 42.0 [12.3] 37.4 [12.3] 90 Ease BTUH [kW] 67.5 [19.8] 64.4 [18.9] 62.7 [18.4] 92 Total BTUH [kW] 63.9 [18.7] 60.9 [17.8] 59.3 [17.4] 90 Gas BTUH [kW] 63.9 [18.7] 60.9 [17.8] 59	wbE 71°F [21.7°C] 2400 [1133] 1900 [897] 1620 [765] 2400 [1133] DR ⊙ 0.02 0.07 0.1 0.02 75 Total BTUH [kW] 81.6 [23.9] 77.9 [22.8] 75.8 [22.2] 77.5 [22.7] 80 Sens BTUH [kW] 71.6 [21.0] 60.1 [17.6] 54.0 [17.6] 77.5 [22.7] 76.1 Sens BTUH [kW] 78.1 [22.9] 74.6 [21.9] 72.6 [21.3] 74.0 [21.7] 76.7 Sens BTUH [kW] 78.1 [22.9] 74.6 [21.9] 72.6 [21.3] 74.0 [21.7] 90 Sens BTUH [kW] 78.1 [22.9] 74.6 [21.9] 72.6 [21.3] 74.0 [21.7] 90 Sens BTUH [kW] 76.7 [18.6] 47.1 [13.8] 42.1 [13.8] 65.6 [19.2] 90 Sens BTUH [kW] 71.1 [20.8] 67.8 [19.9] 66.0 [19.3] 66.6 [19.6] 90 Sens BTUH [kW] 71.1 [20.8] 67.8 [19.9] 66.0 [19.3] 59.7 [17.5] 91 Sens BTUH [kW] 71.1 [20.8] 64.4 [18.9] 37.4 [12.3] 59.7 [17.5] 90 S	wbE 71°F [21.7°C] 67°F [19.4°C] CFM [L/s] 2400 [1133] 1900 [897] 1620 [765] 2400 [1133] 1900 [897] DR 0.02 0.07 0.1 0.02 0.07 0.1 Total BTUH [kW] 81.6 [23.9] 77.9 [22.8] 75.8 [22.2] 77.5 [22.7] 73.9 [21.7] Bens BTUH [kW] 78.1 [22.9] 74.6 [21.9] 72.6 [21.3] 74.0 [21.7] 70.6 [20.7] Power 3.6 3.5 3.4 3.5 3.5 B0 Total BTUH [kW] 78.1 [22.9] 74.6 [21.9] 72.6 [21.3] 74.0 [21.7] 70.6 [20.7] Power 3.7 3.7 3.6 3.7 3.6 3.7 85 Total BTUH [kW] 74.6 [21.9] 71.2 [20.9] 69.3 [20.3] 70.4 [20.6] 67.2 [19.7] 90 Total BTUH [kW] 74.6 [21.9] 71.1 [2.8] 67.8 [19.9] 66.0 [19.3] 66.9 [19.6] 63.8 [18.7] 90 Total BTUH [kW] 67.5 [19.8] 64.4 [18.9] 62.7 [18.4] 63.3 [18.5] 60.4 [17	CFM [L/s] 2400 [1133] 1900 [897] 1620 [765] 2400 [1133] 1900 [897] 1620 [765] DR © 0.02 0.07 0.1 0.02 0.07 0.1 75 Total BTUH [kW] 81.6 [23.9] 77.9 [22.8] 75.8 [22.2] 77.5 [22.7] 73.9 [21.7] 68.2 [20.0] 61.6 [20.0] 90wer 3.6 3.5 3.4 3.5 3.5 3.4 80 Total BTUH [kW] 78.1 [22.9] 74.6 [21.9] 72.6 [21.3] 74.0 [21.7] 70.6 [20.7] 68.7 [20.1] 90wer 3.7 3.7 3.6 3.7 3.6 3.7 3.6 3.6 3.6 85 Total BTUH [kW] 74.6 [21.9] 71.2 [20.9] 69.3 [20.3] 70.4 [20.6] 67.2 [19.7] 65.4 [19.2] 90 Total BTUH [kW] 71.1 [20.8] 67.8 [19.9] 66.0 [19.3] 59.7 [17.5] 55.2 [16.2] 49.7 [16.2] 90 Total BTUH [kW] 71.1 [20.8] 67.8 [19.9] 66.0 [19.3] 59.7 [17.5] 50.1 [14.7] 58.8 [17.7]	wbE 71°F [21.7°C] 67°F [19.4°C] 67°F [19.4°C] 2400 [1133] 1900 [897] 1620 [765] 2400 [1133] 1900 [897] 1620 [776] 2400 [1133] 1900 [897] 1620 [765] 2400 [1133] 1900 [897] 1620 [765] 2400 [1133] 1900 [897] 1620 [765] 2400 [1133] 1900 [897] 1620 [765] 2400 [1133] 1900 [897] 1620 [765] 2400 [1133] 1200 [87] 1620 [765] 2400 [1133] 1200 [87] 1620 [765] 2400 [1133] 1200 [87] 1620 [765] 2400 [1133] 1200 [87] 1620 [76] 2400 [1133] 1200 [87] 1620 [76] 71.9 [21.1] 73.2 [21.4] 73.5 [21.7]	wbE 71°F [21.7°C] 67°F [19.4°C] 677°F [19.4°C] 63°F [17.2°C] CFM [L/s] 2400 [1133] 1900 [897] 1620 [765] 2400 [1133] 1900 [877] DR © 0.02 0.07 0.1 0.02 0.07 0.1 0.02 0.07 75 Total BTUH [kW] 81.6 [23.9] 77.9 [22.8] 75.8 [22.2] 77.5 [22.7] 73.9 [21.7] 71.9 [21.1] 73.2 [21.4] 69.8 [20.5] 80 Sens BTUH [kW] 78.1 [22.9] 74.6 [21.9] 72.6 [21.3] 74.0 [21.7] 70.6 [20.7] 68.7 [20.1] 69.7 [20.4] 66.5 [19.5] 80 Total BTUH [kW] 78.1 [27.9] 71.6 [21.9] 72.6 [21.3] 74.0 [21.7] 70.6 [20.7] 68.7 [20.1] 69.7 [20.4] 66.5 [19.5] 80 Total BTUH [kW] 74.6 [21.9] 71.2 [20.9] 69.3 [20.3] 70.4 [20.6] 67.2 [19.7] 65.4 [19.2] 66.1 [19.4] 66.1 [19.4] 66.1 [19.4] 66.1 [19.4] 66.1 [19.4] 66.1 [19.4] 66.1 [19.4] 66.1 [19.4] 66.1 [19.4] 66.1 [18.4] 71.7 [5 5

DR —Depression ratio

 dbb
 —Entering air dry bulb
 Sens
 —Sensible

 wbb
 —Entering air wet bulb
 Power—KW inpu

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH Power—KW input **NOTES:** ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

				EN	ITERING INDOC)R AIR @ 80°F	[26.7°C] dbE (1)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	2760 [1303]	2300 [1086]	1840 [868]	2760 [1303]	2300 [1086]	1840 [868]	2760 [1303]	2300 [1086]	1840 [868]
		DR ①	0.04	0.09	0.15	0.04	0.09	0.15	0.04	0.09	0.15
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	100.2 [29.4] 62.9 [18.4] 4.6	96.6 [28.3] 53.9 [15.8] 4.5	93.1 [27.3] 45.7 [15.8] 4.4	93.9 [27.5] 72.3 [21.2] 4.6	90.6 [26.5] 62.8 [18.4] 4.5	87.3 [25.6] 53.9 [18.4] 4.4	88.8 [26.0] 80.9 [23.7] 4.5	85.7 [25.1] 70.9 [20.8] 4.5	82.6 [24.2] 61.5 [20.8] 4.4
O U T	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	97.4 [28.5] 61.2 [17.9] 4.9	94.0 [27.5] 52.6 [15.4] 4.8	90.6 [26.5] 44.6 [15.4] 4.7	91.2 [26.7] 70.8 [20.7] 4.9	88.0 [25.8] 61.6 [18.0] 4.8	84.8 [24.8] 52.9 [18.0] 4.7	86.1 [25.2] 79.4 [23.3] 4.8	83.0 [24.3] 69.5 [20.4] 4.7	80.0 [23.4] 60.3 [20.4] 4.7
D O O R	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	94.5 [27.7] 59.6 [17.5] 5.2	91.2 [26.7] 51.2 [15.0] 5.1	87.9 [25.8] 43.4 [15.0] 5.0	88.3 [25.9] 69.2 [20.3] 5.2	85.2 [25.0] 60.2 [17.6] 5.1	82.1 [24.1] 51.8 [17.6] 5.0	83.2 [24.4] 77.7 [22.8] 5.1	80.2 [23.5] 68.1 [20.0] 5.0	77.3 [22.6] 59.1 [20.0] 5.0
D R Y	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	91.5 [26.8] 57.9 [17.0] 5.5	88.3 [25.9] 49.8 [14.6] 5.4	85.1 [24.9] 42.3 [14.6] 5.3	85.2 [25.0] 67.5 [19.8] 5.5	82.2 [24.1] 58.7 [17.2] 5.4	79.2 [23.2] 50.5 [17.2] 5.3	80.1 [23.5] 76.0 [22.3] 5.5	77.3 [22.6] 66.7 [19.5] 5.4	74.5 [21.8] 57.9 [19.5] 5.3
B U L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	88.3 [25.9] 56.2 [16.5] 5.9	85.2 [25.0] 48.3 [14.2] 5.8	82.1 [24.1] 41.0 [14.2] 5.6	82.0 [24.0] 65.7 [19.2] 5.8	79.1 [23.2] 57.2 [16.8] 5.7	76.3 [22.4] 49.3 [16.8] 5.6	76.9 [22.5] 74.2 [21.7] 5.8	74.2 [21.7] 65.2 [19.1] 5.7	71.5 [20.9] 56.7 [19.1] 5.6
T E M	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	84.9 [24.9] 54.3 [15.9] 6.2	81.9 [24.0] 46.7 [13.7] 6.1	79.0 [23.1] 39.7 [13.7] 6.0	78.7 [23.1] 64.0 [18.8] 6.2	75.9 [22.2] 55.7 [16.3] 6.1	73.2 [21.4] 48.1 [16.3] 6.0	73.6 [21.6] 72.5 [21.2] 6.1	71.0 [20.8] 63.7 [18.7] 6.0	68.4 [20.0] 55.4 [18.7] 5.9
P E R A	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	81.4 [23.8] 52.5 [15.4] 6.6	78.6 [23.0] 45.2 [13.2] 6.5	75.7 [22.2] 38.4 [13.2] 6.4	75.2 [22.0] 62.1 [18.2] 6.6	72.5 [21.2] 54.1 [15.9] 6.4	69.9 [20.5] 46.7 [15.9] 6.3	70.1 [20.5] 70.1 [20.5] 6.5	67.6 [19.8] 62.1 [18.2] 6.4	65.1 [19.1] 54.0 [18.2] 6.3
T U R E	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	77.8 [22.8] 50.5 [14.8] 7.0	75.0 [22.0] 43.4 [12.7] 6.9	72.3 [21.2] 36.9 [12.7] 6.7	71.5 [20.9] 60.0 [17.6] 6.9	69.0 [20.2] 52.4 [15.4] 6.8	66.5 [19.5] 45.2 [15.4] 6.7	66.4 [19.5] 66.4 [19.5] 6.9	64.1 [18.8] 60.4 [17.7] 6.8	61.7 [18.1] 52.6 [17.7] 6.7
°F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	74.0 [21.7] 48.5 [14.2] 7.4	71.4 [20.9] 41.8 [12.2] 7.3	68.8 [20.2] 35.5 [12.2] 7.1	67.7 [19.8] 57.9 [17.0] 7.4	65.3 [19.1] 50.6 [14.8] 7.2	63.0 [18.5] 43.8 [14.8] 7.1	62.6 [18.3] 62.6 [18.3] 7.3	60.4 [17.7] 58.7 [17.2] 7.2	58.2 [17.1] 51.2 [17.1] 7.1
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	70.0 [20.5] 46.4 [13.6] 7.8	67.6 [19.8] 40.0 [11.7] 7.7	65.1 [19.1] 34.0 [11.7] 7.5	63.8 [18.7] 56.0 [16.4] 7.8	61.5 [18.0] 48.9 [14.3] 7.7	59.3 [17.4] 42.3 [14.3] 7.5	58.6 [17.2] 58.6 [17.2] 7.8	56.6 [16.6] 56.6 [16.6] 7.6	54.5 [16.0] 49.7 [16.0] 7.5
	Doproc	sion ratio	Total Tota	al canacity x 10		NOTES. (1	When the ente	ring air dry bull	n is other than 9	0°F [27°C] adi	uct the conci

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH Power—KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

				EN	ITERING INDOC	OR AIR @ 80°F	[26.7°C] dbE (1)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	2760 [1303]	2650 [1251]	1840 [868]	2760 [1303]	2650 [1251]	1840 [868]	2760 [1303]	2650 [1251]	1840 [868]
		DR 1)	0.02	0.03	0.13	0.02	0.03	0.13	0.02	0.03	0.13
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	111.6 [32.7] 65.3 [19.1] 5.2	110.7 [32.4] 63.2 [18.5] 5.2	104.6 [30.6] 49.0 [18.5] 5.0	106.3 [31.1] 77.3 [22.6] 5.1	105.5 [30.9] 75.0 [22.0] 5.1	99.7 [29.2] 59.3 [22.0] 5.0	102.5 [30.0] 88.4 [25.9] 5.1	101.7 [29.8] 85.9 [25.2] 5.1	96.0 [28.1] 68.8 [25.2] 4.9
O U T	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	108.2 [31.7] 63.7 [18.7] 5.5	107.4 [31.5] 61.7 [18.1] 5.5	101.4 [29.7] 47.8 [18.1] 5.3	103.0 [30.2] 75.7 [22.2] 5.4	102.2 [29.9] 73.5 [21.5] 5.4	96.5 [28.3] 58.1 [21.5] 5.3	99.1 [29.0] 86.7 [25.4] 5.4	98.3 [28.8] 84.3 [24.7] 5.4	92.9 [27.2] 67.6 [24.7] 5.2
D O O R	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	104.7 [30.7] 62.0 [18.2] 5.8	103.9 [30.4] 60.0 [17.6] 5.8	98.1 [28.7] 46.5 [17.6] 5.6	99.5 [29.2] 74.0 [21.7] 5.8	98.7 [28.9] 71.8 [21.0] 5.8	93.2 [27.3] 56.8 [21.0] 5.6	95.6 [28.0] 85.0 [24.9] 5.7	94.9 [27.8] 82.7 [24.2] 5.7	89.6 [26.3] 66.4 [24.2] 5.6
D R Y	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	101.0 [29.6] 60.0 [17.6] 6.2	100.3 [29.4] 58.2 [17.1] 6.1	94.7 [27.7] 45.1 [17.1] 6.0	95.8 [28.1] 72.1 [21.1] 6.1	95.1 [27.9] 70.0 [20.5] 6.1	89.8 [26.3] 55.5 [20.5] 5.9	91.9 [26.9] 83.1 [24.3] 6.1	91.2 [26.7] 80.8 [23.7] 6.1	86.2 [25.3] 65.0 [23.7] 5.9
B U L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	97.2 [28.5] 58.1 [17.0] 6.5	96.5 [28.3] 56.3 [16.5] 6.5	91.1 [26.7] 43.6 [16.5] 6.3	92.0 [27.0] 70.1 [20.5] 6.5	91.3 [26.8] 68.1 [20.0] 6.5	86.2 [25.3] 54.0 [20.0] 6.3	88.1 [25.8] 81.1 [23.8] 6.4	87.4 [25.6] 78.9 [23.1] 6.4	82.6 [24.2] 63.5 [23.1] 6.2
Б Т Е М	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	93.2 [27.3] 56.0 [16.4] 6.9	92.5 [27.1] 54.2 [15.9] 6.9	87.4 [25.6] 42.1 [15.9] 6.7	88.0 [25.8] 68.0 [19.9] 6.9	87.3 [25.6] 66.0 [19.3] 6.9	82.5 [24.2] 52.5 [19.3] 6.7	84.1 [24.6] 79.0 [23.1] 6.8	83.5 [24.5] 76.9 [22.5] 6.8	78.9 [23.1] 62.0 [22.5] 6.6
P E R A	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	89.1 [26.1] 53.8 [15.8] 7.3	88.4 [25.9] 52.1 [15.3] 7.3	83.5 [24.5] 40.5 [15.3] 7.1	83.9 [24.6] 65.9 [19.3] 7.3	83.3 [24.4] 64.0 [18.8] 7.3	78.6 [23.0] 50.8 [18.8] 7.1	80.0 [23.4] 76.9 [22.5] 7.2	79.4 [23.3] 74.8 [21.9] 7.2	75.0 [22.0] 60.4 [21.9] 7.0
T U R E	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	84.8 [24.8] 51.5 [15.1] 7.8	84.2 [24.7] 49.9 [14.6] 7.7	79.5 [23.3] 38.8 [14.6] 7.5	79.6 [23.3] 63.5 [18.6] 7.7	79.0 [23.1] 61.7 [18.1] 7.7	74.6 [21.9] 49.1 [18.1] 7.5	75.7 [22.2] 74.5 [21.8] 7.7	75.2 [22.0] 72.6 [21.3] 7.7	71.0 [20.8] 58.6 [20.8] 7.4
°F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	80.4 [23.6] 49.0 [14.4] 8.2	79.8 [23.4] 47.5 [13.9] 8.2	75.4 [22.1] 37.0 [13.9] 8.0	75.2 [22.0] 61.1 [17.9] 8.2	74.6 [21.9] 59.3 [17.4] 8.2	70.5 [20.7] 47.3 [17.4] 7.9	71.3 [20.9] 71.3 [20.9] 8.1	70.8 [20.7] 70.2 [20.6] 8.1	66.8 [19.6] 56.8 [19.6] 7.9
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	75.8 [22.2] 46.5 [13.6] 8.7	75.3 [22.1] 45.1 [13.2] 8.7	71.1 [20.8] 35.1 [13.2] 8.4	70.6 [20.7] 58.5 [17.1] 8.7	70.1 [20.5] 56.9 [16.7] 8.6	66.2 [19.4] 45.4 [16.7] 8.4	66.7 [19.5] 66.7 [19.5] 8.6	66.2 [19.4] 66.2 [19.4] 8.6	62.5 [18.3] 54.9 [18.3] 8.3
DR —	-Depres	sion ratio	Total -Tota	al capacity x 10		NOTES: (1	When the ente	ring air dry bull	h is other than 8	0°F [27°C], adji	ist the sensible

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH Power—KW input

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 − DR) x (dbE − 80)].

				EN	ITERING INDO)R AIR @ 80°F	[26.7°C] dbE (1)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	3960 [1869]	3300 [1558]	2640 [1246]	3960 [1869]	3300 [1558]	2640 [1246]	3960 [1869]	3300 [1558]	2640 [1246]
		DR ①	0.02	0.05	0.09	0.02	0.05	0.09	0.02	0.05	0.09
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	129.5 [37.9] 100.4 [29.4] 6.2	125.0 [36.6] 87.3 [25.6] 6.0	120.4 [35.3] 75.0 [25.6] 5.9	123.7 [36.2] 115.7 [33.9] 6.1	119.4 [35.0] 101.5 [29.7] 6.0	115.0 [33.7] 88.0 [29.7] 5.9	119.6 [35.0] 119.6 [35.0] 6.0	115.5 [33.8] 112.3 [32.9] 5.9	111.3 [32.6] 98.0 [32.6] 5.8
O U T	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	125.5 [36.8] 93.2 [27.3] 6.5	121.1 [35.5] 80.8 [23.7] 6.4	116.7 [34.2] 69.3 [23.7] 6.3	119.7 [35.1] 108.5 [31.8] 6.4	115.5 [33.8] 95.0 [27.8] 6.3	111.3 [32.6] 82.3 [27.8] 6.2	115.6 [33.9] 115.6 [33.9] 6.4	111.6 [32.7] 105.8 [31.0] 6.3	107.5 [31.5] 92.2 [31.0] 6.2
D O O R	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	121.4 [35.6] 86.6 [25.4] 6.9	117.2 [34.3] 75.0 [22.0] 6.8	112.9 [33.1] 64.1 [22.0] 6.7	115.6 [33.9] 101.9 [29.9] 6.8	111.6 [32.7] 89.2 [26.1] 6.7	107.5 [31.5] 77.2 [26.1] 6.6	111.6 [32.7] 111.6 [32.7] 6.8	107.6 [31.5] 99.9 [29.3] 6.6	103.7 [30.4] 87.0 [29.3] 6.5
D R Y	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	117.2 [34.3] 80.9 [23.7] 7.3	113.1 [33.1] 69.9 [20.5] 7.2	109.0 [31.9] 59.7 [20.5] 7.1	111.4 [32.6] 96.2 [28.2] 7.2	107.5 [31.5] 84.1 [24.6] 7.1	103.6 [30.4] 72.7 [24.6] 7.0	107.4 [31.5] 107.4 [31.5] 7.2	103.6 [30.4] 94.9 [27.8] 7.0	99.8 [29.2] 82.6 [27.8] 6.9
B U L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	113.0 [33.1] 76.1 [22.3] 7.7	109.0 [31.9] 65.6 [19.2] 7.6	105.0 [30.8] 55.9 [19.2] 7.5	107.2 [31.4] 91.4 [26.8] 7.7	103.4 [30.3] 79.8 [23.4] 7.5	99.6 [29.2] 68.9 [23.4] 7.4	103.1 [30.2] 103.0 [30.2] 7.6	99.5 [29.2] 90.6 [26.5] 7.5	95.9 [28.1] 78.9 [26.5] 7.3
Б Т Е М	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	108.6 [31.8] 71.9 [21.1] 8.2	104.8 [30.7] 62.0 [18.2] 8.0	101.0 [29.6] 52.8 [18.2] 7.9	102.8 [30.1] 87.2 [25.5] 8.1	99.2 [29.1] 76.2 [22.3] 8.0	95.6 [28.0] 65.8 [22.3] 7.8	98.7 [28.9] 98.7 [28.9] 8.0	95.3 [27.9] 87.0 [25.5] 7.9	91.8 [26.9] 75.7 [25.5] 7.8
P E R A	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	104.1 [30.5] 68.6 [20.1] 8.7	100.5 [29.4] 59.1 [17.3] 8.5	96.8 [28.4] 50.2 [17.3] 8.4	98.3 [28.8] 83.9 [24.6] 8.6	94.9 [27.8] 73.3 [21.5] 8.4	91.4 [26.8] 63.3 [21.5] 8.3	94.3 [27.6] 94.3 [27.6] 8.5	91.0 [26.7] 84.1 [24.6] 8.4	87.7 [25.7] 73.3 [24.6] 8.2
T U R E	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	99.6 [29.2] 66.0 [19.3] 9.2	96.1 [28.2] 56.9 [16.7] 9.0	92.6 [27.1] 48.4 [16.7] 8.8	93.8 [27.5] 81.3 [23.8] 9.1	90.5 [26.5] 71.1 [20.8] 8.9	87.2 [25.5] 61.5 [20.8] 8.8	89.7 [26.3] 89.7 [26.3] 9.0	86.6 [25.4] 81.9 [24.0] 8.9	83.4 [24.4] 71.4 [24.0] 8.7
°F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	95.0 [27.8] 64.3 [18.8] 9.7	91.6 [26.8] 55.4 [16.2] 9.5	88.3 [25.9] 47.2 [16.2] 9.3	89.2 [26.1] 79.6 [23.3] 9.6	86.0 [25.2] 69.6 [20.4] 9.4	82.9 [24.3] 60.3 [20.4] 9.3	85.1 [24.9] 85.1 [24.9] 9.5	82.1 [24.1] 80.4 [23.6] 9.4	79.1 [23.2] 70.2 [23.2] 9.2
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	90.2 [26.4] 63.2 [18.5] 10.2	87.1 [25.5] 54.7 [16.0] 10.0	83.9 [24.6] 46.7 [16.0] 9.9	84.4 [24.7] 78.5 [23.0] 10.1	81.5 [23.9] 68.9 [20.2] 10.0	78.5 [23.0] 59.7 [20.2] 9.8	80.4 [23.6] 80.4 [23.6] 10.1	77.6 [22.7] 77.6 [22.7] 9.9	74.7 [21.9] 69.6 [21.9] 9.7
	Danraa	sion ratio	Total Tat	al canacity x 10		NOTES. G	When the ente	ring oir dru bull	in other than (0°E [27°C] adii	unt the enneihle

DR —Depression ratio dbE —Entering air dry bulb wbE—Entering air wet bulb

NOTES: ① When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH Power—KW input

				EN	ITERING INDOC)R AIR @ 80°F	[26.7°C] dbE (1)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	4980 [2351]	3500 [1652]	3320 [1567]	4980 [2351]	3500 [1652]	3320 [1567]	4980 [2351]	3500 [1652]	3320 [1567]
		DR ①	0.01	0.04	0.06	0.01	0.04	0.06	0.01	0.04	0.06
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	166.9 [48.9] 116.6 [34.2] 8.5	154.9 [45.4] 85.4 [25.0] 8.2	153.5 [45.0] 82.0 [25.0] 8.2	157.5 [46.1] 134.3 [39.3] 8.3	146.3 [42.9] 101.0 [29.6] 8.0	144.9 [42.5] 97.2 [29.6] 8.0	149.4 [43.8] 149.4 [43.8] 8.1	138.7 [40.6] 115.7 [33.9] 7.8	137.4 [40.3] 111.7 [33.9] 7.8
	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	162.8 [47.7] 114.1 [33.4] 9.0	151.2 [44.3] 83.7 [24.5] 8.7	149.8 [43.9] 80.3 [24.5] 8.6	153.5 [45.0] 131.8 [38.6] 8.8	142.5 [41.8] 99.1 [29.0] 8.5	141.2 [41.4] 95.5 [29.0] 8.4	145.3 [42.6] 145.3 [42.6] 8.6	134.9 [39.5] 113.9 [33.4] 8.3	133.7 [39.2] 110.0 [33.4] 8.2
D O R	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	158.6 [46.5] 111.5 [32.7] 9.5	147.2 [43.1] 81.7 [23.9] 9.1	145.9 [42.7] 78.5 [23.9] 9.1	149.2 [43.7] 129.2 [37.9] 9.2	138.6 [40.6] 97.3 [28.5] 8.9	137.3 [40.2] 93.7 [28.5] 8.9	141.1 [41.3] 141.1 [41.3] 9.0	131.0 [38.4] 112.0 [32.8] 8.7	129.8 [38.0] 108.1 [32.8] 8.7
D R Y	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	154.1 [45.2] 108.7 [31.8] 9.9	143.1 [41.9] 79.8 [23.4] 9.6	141.8 [41.5] 76.6 [23.4] 9.5	144.8 [42.4] 126.6 [37.1] 9.7	134.4 [39.4] 95.3 [27.9] 9.4	133.2 [39.0] 91.8 [27.9] 9.4	136.6 [40.0] 136.6 [40.0] 9.5	126.9 [37.2] 110.1 [32.3] 9.2	125.7 [36.8] 106.3 [32.3] 9.2
B U L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	149.5 [43.8] 105.8 [31.0] 10.5	138.8 [40.7] 77.7 [22.8] 10.1	137.5 [40.3] 74.6 [22.8] 10.0	140.1 [41.0] 123.6 [36.2] 10.3	130.1 [38.1] 93.2 [27.3] 9.9	128.9 [37.8] 89.8 [27.3] 9.9	132.0 [38.7] 132.0 [38.7] 10.1	122.6 [35.9] 108.0 [31.6] 9.7	121.4 [35.6] 104.2 [31.6] 9.7
T E M	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	144.6 [42.4] 102.9 [30.1] 11.0	134.3 [39.3] 75.6 [22.2] 10.6	133.1 [39.0] 72.6 [22.2] 10.6	135.3 [39.6] 120.6 [35.3] 10.8	125.6 [36.8] 91.0 [26.7] 10.4	124.5 [36.5] 87.7 [26.7] 10.4	127.1 [37.2] 127.1 [37.2] 10.6	118.1 [34.6] 105.9 [31.0] 10.2	117.0 [34.3] 102.3 [31.0] 10.2
P E R A	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	139.6 [40.9] 99.7 [29.2] 11.6	129.6 [38.0] 73.3 [21.5] 11.2	128.4 [37.6] 70.4 [21.5] 11.1	130.3 [38.2] 117.6 [34.5] 11.4	121.0 [35.5] 88.9 [26.0] 11.0	119.8 [35.1] 85.6 [26.0] 10.9	122.1 [35.8] 122.1 [35.8] 11.2	113.4 [33.2] 103.6 [30.4] 10.8	112.3 [32.9] 100.0 [30.4] 10.7
T U R E	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	134.4 [39.4] 96.5 [28.3] 12.2	124.8 [36.6] 71.0 [20.8] 11.8	123.6 [36.2] 68.1 [20.8] 11.7	125.1 [36.7] 114.3 [33.5] 12.0	116.1 [34.0] 86.5 [25.3] 11.6	115.0 [33.7] 83.4 [25.3] 11.5	116.9 [34.3] 116.9 [34.3] 11.8	108.5 [31.8] 101.2 [29.7] 11.4	107.5 [31.5] 97.8 [29.7] 11.3
°F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	129.0 [37.8] 93.2 [27.3] 12.8	119.8 [35.1] 68.6 [20.1] 12.4	118.6 [34.7] 65.8 [20.1] 12.3	119.6 [35.0] 110.9 [32.5] 12.6	111.1 [32.6] 84.1 [24.6] 12.2	110.1 [32.3] 81.1 [24.6] 12.1	111.5 [32.7] 111.5 [32.7] 12.4	103.5 [30.3] 98.8 [28.9] 12.0	102.5 [30.0] 95.5 [28.9] 11.9
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	123.4 [36.2] 89.7 [26.3] 13.5	114.6 [33.6] 66.1 [19.4] 13.0	113.5 [33.3] 63.4 [19.4] 12.9	114.0 [33.4] 107.4 [31.5] 13.3	105.9 [31.0] 81.6 [23.9] 12.8	104.9 [30.7] 78.7 [23.9] 12.7	105.9 [31.0] 105.9 [31.0] 13.1	98.3 [28.8] 96.3 [28.2] 12.6	97.4 [28.5] 93.1 [28.2] 12.5
DR —	-Depres	sion ratio	Total — Tota	al capacity x 10	00 BTUH	NOTES: ①	When the ente	ring air dry bull	is other than 8	0°F [27°C], adj	ust the sensible

capacity from the table by adding $[1.10 \times CFM \times (1 - DR) \times (dbE - 80)]$.

dbE —Entering air dry bulb wbE—Entering air wet bulb

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH Power—KW input

AIRFLOW PERFORMANCE—6 TON [21.1 kW]—50 Hz—SIDEFLOW

			0	×	1		1	1	1				Ι	
			1.9 [.47] 2.0 [.50]	RPM \	- 									
			47] 2	W B					1					
			1.9[.4	RPM	1	1		1	1	1		1		
			45]	W	Ι	1	1	1	1	1	1	1	Ι	
			1.6 [.40] 1.7 [.42] 1.8 [.45]	RPM	Ι	Ι	Ι	I	I	1	I	Ι	Ι	
			.42]	≥	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	
			1.7	RPM	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	
			[04.]	≥	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι		
			1.6	RPM	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	١	
			[.37]	≥	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι		
			1.5	RPM	Ι	Ι	Ι	Ι	I	Ι	Ι	Ι	١	
			[.35]	N	Ι	Ι	Ι	Ι	Ι	1	Ι	Ι	1	
			1.4	RPM	Ι	1	Ι	Ι	Ι	1	1	Ι	Ι	
			[.32]	≥		1	Ι	Ι	I	1		1		
		Pa]	1.3	RPM	Ι	Ι	Ι	1	1	1	1	Ι		
		ter (k	[.30]	M	Ι	Ι	Ι	Ι	Ι	1	1	Ι		
		of Wa	1.2	RPM	Ι	Ι	Ι	Ι	1	1	Ι	Ι		
		ches	[.27]	N	3 948	866	Ι	Ι	Ι	1	1	Ι		
		<u>н</u>		RPM	1058	1070								
		Inssa.] [.25	M	1 894	4 941	7 993	1 1050						
		atic Pi	1.0	RPM	3 1021	5 1034	5 1047	9 1061	-	 				
		nal Sta	9 [.22	M	2 843	6 886	11 935	26 989	11 1047	57 1111	74 1180			
		External Static Pressure—Inches of Water [kPa]	0.0	V RPM	794 982	834 996	879 1011	930 1026	985 1041	1045 1057	1111 1074	81		
•			[.17] 0.8 [.20] 0.9 [.22] 1.0 [.25] 1.1 [.27] 1.2 [.30] 1.3 [.32] 1.4 [.35] 1.5 [.37]	RPM W	940 7	955 8	971 8	987 9.	1004 9.	1021 10	1039 11	1057 1181	' 	
			7] 0	W B	747 9	784 9	826 9	873 9	925 1(982 1(1044 10	1111 10	1183 -	
	z		1.1		895 7	912 7	929 8	947 8	965 5	983 9	1002	1021 1		
•	e 50 ł		15] (W	702	736	775	819	867	921	980	1043 1	1112 1	
	bhas		0.6 [.	RPM	848	866	885	903	923	942	963	983	1004	
	2		.12]	N	660	691	726	767	812	862	918	978	1043	
	80-41		0.5 [.	RPM	299	818	838	858	878	899	921	942	965 1043 1004 1112 1041	ine.
	20 /3		.10]	×	621	648	680	-	759	806	858	915	977	l ploc
	Model SKNL-B072 Voltage 200-220 /380-415 — 3 phase 50 Hz		0.4 [RPM	747	767	788	810 717	831	853	876	899	913 923	ht of I
	Itage		.07]	Ν	Ι	Ι	636	670	708	752	801	855	913	ve rig
	2		0.3	RPM	Ι	Ι	736	759	782	805	829	853	878	M-Dri
	B072		[.05]	×	Ι	Ι	Ι	Ι	660	701	746	796	831 852	line.
	SKNL-		0.2	RPM	Ι	Ι	Ι	Ι	730	754	677	805	831	blod
	odel ([.02]	N	Ι	Ι	Ι	Ι	I	1	693	741	793	eft of
	Z		0.1	RPM	I	Ι	Ι	I		Ι	727	754	781	Trive la
				UM ILVAL RPM W RPM	1600 [755]	1700 [802]	1800 [849]	1900 [897]	2000 [944]	2100 [991]	2200 [1038]	2300 [1085]	2400 [1133] 781	NOTE: L-Drive left of bold line. M-Drive right of bold line.

				4	268					
	[8.6]	9	50	3	937					
M	1.5 [1118.6]	AK66	1VP-50	2	979					
				-	1022					
				0	1066					
				5	719					
	1.5 [1118.6] AK66 1VP-44 1 2 3 4 900 855									
	L 1.5 [1118.6] AK66 1VP-44 2 3 4 855 812 764									
	1.5 [1118.6] AK66 1VP-44 855 812									
	1.5 [1118.6] AK66 1VP-44 2 3 855 812									
				0	941					
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM					

850 ß

24

NOTES: 1. Factory sheave settings are shown in bold type. 2. Do not set motor sheave below minimum turns open shown. 3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum E.S.P. 4. Drive data shown is for horizontal airflow with dry coil. Add component resistance to duct resistance to determine total E.S.P.

AIRFLOW CORRECTION FACTORS 6 TON [21.1 kW]

ACTUAL—CFM	1600	1700	1800	1900	2000	2100	2200	2300	2400
[r/s]	[755]	[802]	[849]	[897]	[944	[991]	[1038]	[1085]	[1133]
TOTAL MBH	26.0	0.98	0.99	1.00	1.01	1.02	1.03	1.04	1.05
SENSIBLE MBH	0.89	0.93	0.97	1.00	1.04	1.08	1.11	1.15	1.19
POWER KW	0.98	0.98	0.99	0.99	1.00	1.00	1.01	1.01	1.02

NOTES: 1. Multiply correction factor times gross performance data. 2. Resulting sensible capacity cannot exceed total capacity.

[] Designates Metric Conversions

COMPONENT AIR RESISTANCE 6 TON [21.1 kW]

	-								
			Sta	ndard Ind	oor Airflov	Standard Indoor Airflow—CFM [L/s]	-/s]		
Component	1600 [755]	1700 [802]	1800 [849]	1900 [897]	2000 [1038]	2100 [991]	2200 [1038]	2300 [1085]	2400 [1138]
			æ	esistance	-Inches	Resistance-Inches Water [kPa]	-		
	-0.09	-0.09	-0.09	-0.08	-0.08	-0.07	-0.07	-0.07	-0.06
	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]
	0.17	0.16	0.15	0.15	0.14	0.14	0.13	0.13	0.12
DOWIIIOW	[.04]	[.04]	[.04]	[.04]	[.03]	[:03]	[.03]	[:03]	[:03]
Downflow Economizer	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03
R.A. Damper Open	[00.]	[00.]	[00.]	[00.]	[00.]	[00.]	[00.]	[.01]	[.01]
Horizontal Economizer	-0.08	-0.08	-0.08	-0.08	-0.07	-0.07	-0.07	-0.07	-0.06
R.A. Damper Open	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.01]
Concentric Grill RXRN-FA65 &	0.01	0.02	0.03	0.04	0.06	0.07	0.09	0.10	0.12
Transition RXMC-CD04	[00]	[.01]	[.01]	[10.]	[10.]	[.02]	[.02]	[.02]	[.02]

- 14		city	Capacity 7.5 Ton [26.4 kW]	[26.4 k	[M																								
AIr												Exter	nal Stat	ic Pres.	External Static Pressure—Inches of Water [kPa]	iches of	Water	[kPa]											
CEM [1 /e]		02]	0.1[.02] 0.2[.05] 0.3[.07] 0.4[.10] 0.5[.12]	J5]	0.3 [.0	[20	0.4 [.1	0	0.5[.1		0.6 [.15]		0.7 [.17]		0.8 [.20]		0.9 [.22]		1.0 [.25]		1.1 [.27]	1.2	1.2 [.30]	1.3 [.32]	.32]	1.4 [.35]	35]	1.5 [.3	[.37]
OI III [L/3]		Μ	RPM	W	RPM	M	RPM	W	RM	_	RPM	W R	RPM	W R	RPM V	W RPM	M M	I RPM	M	RPM	M	RPM	M	RPM	M	RPM	N	RPM	Ν
2000 [944]	1	1	1				589	536	615		648	610 6	676 (649 7	7 307	711 735	_	773 764	4 835	5 794	868	818	096	852	1020	006	1282	933	1581
2200 [1038]	Ι		1				605	633	632	694 (665	725 6	694	769 7	723 8;	831 752		893 782	2 956	6 811	1018	837	1080	871	1150	914	1410	946	1603
2400 [1133]	1	1	1		594	744	623	780	652		682	854 7	711 8	890 7	740 9:	952 770	0 1014	14 799	9 1076	6 828	1138	857	1200	887	1261	929	1538	958	1623
2600 [1227]	Ι		1		602	816	633	858	664		669	948 7	729 1(1010 7	758 10	1072 787	1134	34 816	6 1196	6 846	1258	875	1320	914	1581	943	1666		
2800 [1321]	Ι	1	593	884	623	929	653	974	684 1		717 1	1069 7	748 1	1131 7	775 119	1192 804	1254	54 834	4 1316	6 863	1378	892	1440	928	1709	958	1794		
3000 [1416]	Ι	1	608 972	972	638 1020	1020	. 699	669 1069 705 1127	705 1		734 1	1189 7	763 12	1251 7	792 13	1313 822	2 1375	75 851	1 1437	7 880	1498	913	1752	943	1837			1	
NOTE: L-Drive left of bold line, M-Drive right of bold line.	eft of t	nil bloc	ie, M-Di	ive righ	it of bol	ld line.																							

				9	750			
				5	792			
	37.1]	5	44	4	834			
M	3.0 [2237.1]	BK65	1VP-44	з	876			
				2	917			
				Ļ	960			
				9	589			
L 3.0 [2237.1] BK90 1VP-44 5 695 669 642 616 5								
L 3.0 [2237.1] BK90 1VP-44 3 4 5 616 642 616								
L 3.0 [2237.1] BK90 1VP-44 3 4 669 642								
L 3.0 [2237.1] BK90 1VP-44 3 4 669 642								
					721			
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM			

L

NOTES: 1. Factory sheave settings are shown in bold print. 2. Do not set motor sheave below one turn open.

AIRFLOW CORRECTION FACTORS 7.5 TON [26.4 kW]

25

ACTUAL—CFM	2000	2200	2400	2600	2800	3000
[r/s]	[944]	[1038]	[1133]	[1227]	[1321]	[1416]
TOTAL MBH	96.	.97	86.	1.00	1.01	1.02
SENSIBLE MBH	89.	.92	96.	66.	1.03	1.06
POWER KW	.98	66.	1.00	1.00	1.01	1.02

NOTES: 1. Multiply correction factor times gross performance data. 2. Resulting sensible capacity cannot exceed total capacity.

[] Designates Metric Conversions

COMPONENT AIR RESISTANCE, IWC 7.5 TON [26.4 kW]	
COMF 7.5 TO	

		S	Standard Indoor Airflow—CFM [L/s]	irflow—CFM [L/:	s]	
Component	2000 [944]	2200 [1038]	2400 [1133]	2600 [1227]	2800 [1321]	3000 [1416]
			Resistance-Inc	Resistance—Inches Water [kPa]		
Wet Coil	.04	.04	.05	.05	90.	90.
Economizer R.A. Damper Open	.03	.04	.05	90.	.07	.08
Concentric Grille & Transition	.11	.12	.13	.15	.17	.19
NOTE: Add component resistance to duct resistance to determine total external static pressure.	istance to duct	resistance to de	etermine total ex	ternal static pre-	ssure.	

AIRFLOW PERFORMANCE—8.5 TON, [29.9 kW]—50 Hz

	Capa	city	8.5 Ton	Capacity 8.5 Ton [29.9 kW]	[W]																								Γ
AIr												Exter	nal Sta	tic Pres	External Static Pressure—Inches of Water [kPa]	Inches	of Wate	r [kPa]											
	0.1[.02]		0.2 [.05]		0.3 [.07]		0.4 [.10]		0.5[.12]	2]	0.6 [.15]	5]	0.7 [.17]		0.8 [.20]		0.9 [.22]		1.0 [.25]	_	1.1 [.27]		1.2 [.30]	1.3	1.3 [.32]	1.4 [.35]	.35]	1.5 [.	[.37]
	RPM	M	RPM	N	RPM	N	RPM	M	RPM		RPM	W	RPM	W R	RPM	W	RPM	W RI	RPM W	/ RPM	M	-	M	RPM	×	RPM	Μ	RPM	N
2200 [1038]	1	1	1	1	1		605	633	632		665	725 (694	769	723 8	831 7	752 8	893 7	782 95	956 811	1 1018	18 837	7 1080	871	1150	914	1410	946	1603
2400 [1133]	1	1	1		594	744	623	780	652		682	854 7	711	890	740 9	952 7	770 1(1014 7	799 107	076 828	8 1138	38 857	7 1200	887	1261	929	1538	958	1623
2600 [1227]	I	1	572	776	602	816	633	858	664	901	669	948 7	729 1	1010 7	758 1(1072 7	787 1	1134 8	816 119	1196 846	6 1258	58 875	5 1320	914	1581	943	1666	1	
2800 [1321]	564	839	593	884	623	929	653	974	684 1		717 1	690	748 1	1131 7	775 1-	1192 8	804 12	1254 8	834 1316	16 863	3 1378	78 892	2 1440	928	1709	958	1794	1	
3000 [1416]	579	924	608	972	638	1020	. 699	1069	705 11		734 1	1189 7	763 1	1251 7	792 13	1313 8	822 1:	1375 8	851 1437	37 880	1498	98 913	3 1752	943	1837			1	
3200 [1510]	603	945	630	1020	659	1095	- 687	1170	715 1	1245		1319 7	770 1	394 7	797 14	1468 8	825 15	1543 8	852 16	1617 880	1692	92			1	1	1	1	
3400 [1605]	629	1114	658	1188	686	1262	714 -	1336	742 1410	410	769 1	1485 7	797 1	1559 8	824 16	1634 8	852 17	1708 8	879 1783	83 950	0 1811	11							
			:	-		:																							

NOTE: L-Drive left of bold line, M-Drive right of bold line.

				9	745
				5	786
	17.1]	10	t4	4	826
M	3.0 [2237.1]	BK65	1VP-44	3	298
				2	206
					955
				9	257
				5	586
	3.0 [2237.1]	BK90	1VP-44	4	616
	3.0 [23	BK	1VP	3	646
				2	675
				-	704
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold print. 2. Do not set motor sheave below one turn open.

AIRFLOW CORRECTION FACTORS 8.5 TON [29.9 kW]

ACTUAL—CFM	2200	2400	2600	2800	3000	3200	3400
[C /S]	[1038]	[1133]	[1227]	[1321]	[1416]	[1510]	[1605]
TOTAL MBH	96.	26.	66 [.]	1.00	1.01	1.03	1.04
SENSIBLE MBH	06.	.93	-97	1.00	1.03	1.07	1.10
POWER kW	66.	66'	1.00	1.00	1.01	1.01	1.01

NOTES: 1. Multiply correction factor times gross performance data. 2. Resulting sensible capacity cannot exceed total capacity.

[] Designates Metric Conversions

COMPONENT AIR RESISTANCE, IWC 8.5 TON [29.9 kW]

			Standard Ir	Standard Indoor Airflow-CFM [L/s]	-CFM [L/s]		
Component	2200 [1038]	2400 [1133]	2600 [1227]	2800 [1321]	3000 [1416]	3200 [1510]	3400 [1605]
			Resistand	Resistance—Inches Water [kPa]	iter [kPa]		
Wet Coil	.04	.05	.05	.06	90.	.07	.07
Economizer R.A. Damper Open	.04	.05	90.	.07	80.	60.	.10
Concentric Grille & Transition	.12	.13	.15	.17	.19	.21	.24
NOTE: Add component resistance to duct resistance to determine total external static pressure.	esistance to d	uct resistance	to determine	total external	static pressur	.e.	

0 Hz
(M]—5
[35.2]
0 TON
CE - 1
RMAN
ERFO
OW PI
AIRFL

	Capi	acity	Capacity 10 Ton [35.2 kW]	35.2 kW	_																						
AIr											Exter	nal Sta	tic Press	ure-In	External Static Pressure—Inches of Water [kPa]	Vater [kł	a]										
	0.1	0.1 [.02]	0.2[.05]	.05]	0.3 [.07]	.07]	0.4 [.10]	[0	0.5[.12]	2]	0.6 [.15]		0.7[.17]		0.8 [.20]	0.0	0.9 [.22]	1.0	1.0 [.25]	1.1 [.27]	27]	1.2 [.30]	<u>[0</u>	1.3[.32]	2]	1.4 [.35]	
	RPM	×	RPM	×	RPM	×	RPM	>	RPM	×	RPM \	W RI	RPM W	V RPM	M	RPM	>	RPM	×	RPM	×	RPM	>	RPM	×	RPM	≥
2600 [1227]			572	776	602	816	633	858	664	901	669 C	948 7	729 1010	10 758	68 1072	2 787	1134	816	1196	846	1258	875	1320	914	1581	943 1	1666
2800 [1321]	564	839	593	884	623	929	653	974	684 1	1020	717 10	1069 7	748 1131	31 775	75 1192	2 804	1254	834	1316	863	1378	892	1440	928	1709	958 1	1794
3000 [1416]	579	924	608	972	638	1020	699	1069	705 1	1127	734 11	1189 7	763 1251	51 792	32 1313	3 822	1375	851	1437	880	1498	913	1752	943	1837		1
3200 [1510]	603	945	630	1020	659	1095	687	1170	715 1	1245	742 13	1319 7	770 1394	94 797	37 1468	3 825	_		1617	880	1692						
3400 [1605]	629	1114	658	1188	686	1262	714	1336	742 1	1410	769 14	1485 7	797 1559	59 824	24 1634	4 852	1708	879	1783	950	1811	1					
3600 [1699]	655	1278	684	1352	713	1426	741	1501	769 1	1576	796 16	1650 8	824 1725	25 851	1799	879	1874	945	1892	I		1					
3800 [1793]	684	1445	712	1519	740	1593	768	1667	796 1	1741	823 18	1816 8	851 1890	90 878	78 1965	5 940	2003										
4000 [1888]	711	1607	739	1682	767	1757	795	1832	823 1	1907	850 15	1981 8	878 2056	56 935	35 2085	5 955	2199									_	
		:																									

NOTE: L-Drive left of bold line, M-Drive right of bold line.

				9	745
				5	786
	7.1]	10	4	4	826
Μ	3.0 [2237.1]	BK65	1VP-44	e	867
				2	907
				Ļ	955
				9	557
				5	586
	237.1]	BK90	1VP-44	4	616
_	3.0 [2237.1]	BK	1VP	з	646
				2	675
				-	704
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold print. 2. Do not set motor sheave below one turn open.

AIRFLOW CORRECTION FACTORS 10 TON [35.2 kW]

1		I						
ACTUAL-CFM	2600	2800	3000	3200	3400	3600	3800	4000
[r/s]	[1227]	[1321]	[1416]	[1510]	[1605]	[1699]	[1793]	[1888]
TOTAL MBH	.95	96'	26'	66'	1.00	1.01	1.02	1.03
SENSIBLE MBH	88.	.91	.93	96.	66.	1.01	1.04	1.07
POWER kW	.98	.98	66'	66.	1.00	1.00	1.01	1.01
NIOTEO: 4 Multiplic connection footon times and and and	oiteenu ee .	it notes a						

NOTES: 1. Multiply correction factor times gross performance data. 2. Resulting sensible capacity cannot exceed total capacity.

[] Designates Metric Conversions

COMPONENT AIR RESISTANCE, IWC 10 TON [35.2 kW]

			Stan	dard Indoor A	Standard Indoor Airflow-CFM [L/s]	[L /S]		
Component	2600 [1227]	2800 [1321]	3000 [1416]	3200 [1510]	3400 [1605]	3600 [1699]	3800 [1793]	4000 [1888]
			Re	sistance—Inc	Resistance—Inches Water [kPa]	Pa]		
Wet Coil	.05	90.	.06	.07	.07	.08	.08	60 [.]
Economizer R.A. Damper Open	90.	.07	80.	60.	.10	11.	.12	.13
Concentric Grille & Transition	.15	.17	.19	.21	.24	.28	.33	.38
NOTE: Add component resistance to duct resistance to determine total external static pressure.	nt resistance	e to duct resi	stance to de	termine total	external stat	tic pressure.		

27

AIRFLOW PERFORMANCE—12.5 TON [44.0 kW]—50 Hz

		40]	≥	2090	2177	2268						
		1.6 [.40]	RPM	782	787	791	1	1	1			
		.37]	×	1993	2078	2166	2258	2354	2453			
		1.5 [.37]	RPM	762	767	772	778	783	789		1	1
		.35]	≥	1897	1980	2066	2156	2249	2346	2447	2551	2659
		1.4 [.35]	RPM	741	747	753	758	764	770	776	782	788
		.32]	×	1803	1883	1967	2054	2145	2240	2338	2440	2545
		1.3 [.32]	RPM	720	726	732	738	744	750	756	763	769
		.30]	×	1710	1788	1869	1954	2043	2135	2231	2330	2433
		1.2 [.30]	RPM	698	704	710	717	723	730	736	743	750
		.27]	×	1618	1694	1773	1855	1942	2031	2125	2222	2323
		1.1 [.27]	RPM	674	681	688	695	701	708	715	723	730
	(Pa]	.25]	N	1528	1601	1678	1758	1842	1929	2020	2115	2213
	External Static Pressure—Inches of Water [kPa]	1.0 [.25]	RPM	650	657	665	672	679	686	694	701	709
	es of M	.22]	Μ	1439	1510	1584	1662	1743	1828	1917	2009	2105
	-Inch	0.9 [.22]	RPM	626	633	640	648	656	663	671	679	687
	essure	.20]	Ν	1352	1420	1492	1567	1646	1729	1815	1905	1998
	atic Pr	0.8 [.20]	RPM	009	608	615	623	631	639	648	656	664
	rnal St	0.7 [.17]	Ν	1265	1331	1401	1474	1550	1631	1714	1802	1893
	Exte	0.7	RPM	573	582	590	598	909	615	623	632	641
² hase 50 Hz		0.6 [.15]	≥	1180	1244	1311	1382	1456	1534	1615	1700	1789
Phase		0.6	RPM	546	555	563	572	580	589	598	607	616
5 — 3		.12]	≥	1097	1158	1223	1291	1363	1438	1517	1600	1686
380-41		0.5 [.12]	RPM	518	527	536	545	554	563	572	582	591
0-220/		[0]	≥	1014	1073	1135	1201	1271	1344	1421	1501	1585
tage 20		0.4	RPM	489	498	507	517	526	536	545	555	565
] Voli		[70.]	≥			Ι	1113	1180	1251	1325	1403	1485
4.0 kW		0.3	RPM W RPM	I	I	Ι	488	498	508	518	528	538
Ton [4		[.05]	≥			Ι	Ι	1	1	1231	1307	510 1386
12.5		0.2	RPM	I	Ι	Ι	I		1	489	500	510
Capacity 12.5 Ton [44.0 kW] Voltage 200-220/380-415 — 3 PI		0.1 [.02] 0.2 [.05] 0.3 [.07] 0.4 [.10]	×	1	1		1	1	1		1	1289
Сар		0.1	RPM	Ι	Ι	Ι	Ι		1	Ι	Ι	482
v	AIL			3400 [1604]	3600 [1699]	3800 [1793]	4000 [1888]	4200 [1982]	4400 [2076]	4600 [2171]	4800 [2265]	5000 [2359]

NOTE: L-Drive left of bold line, M-Drive right of bold line.

				9	652		
				2	679		
	8.5] H 35	[8.5] H	4	708			
N	5.0 [3728.5]	BK85H	1 VM-65	3	736		
				2	764		
						-	789
		5.0 [3728.5] BK72H		9	481		
				5	504		
	728.5]		BK72H	BK72H	1VP-44	4	538
	5.0 [3] BK7 1VF				1VP	3	561
				2	597		
				1	620		
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM		

NOTES: 1. Factory sheave settings are shown in bold type. 2. Do not set motor sheave below minimum or maximum turns open shown. 3. Re-adjustment of sheave required to achieve rated airflow at ARI minimum External Static Pressure 4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

AIRFLOW CORRECTION FACTORS 12.5 TON [44.0 kW]

ACTUAL-CFM	3800	4000	4200	4400	4600	4800	5000
[r/s]	[1793]	[1888]	[1982]	[2076]	[2171]	[2265]	[2359]
TOTAL MBH	0.96	26.0	76.0	0.98	0.98	0.99	66.0
SENSIBLE MBH	0.86	0.88	06.0	0.92	0.94	0.96	0.98
POWER KW	0.99	0.99	0.99	0.99	1.00	1.00	1.00

NOTES: 1. Multiply correction factor times gross performance data. 2. Resulting sensible capacity cannot exceed total capacity.

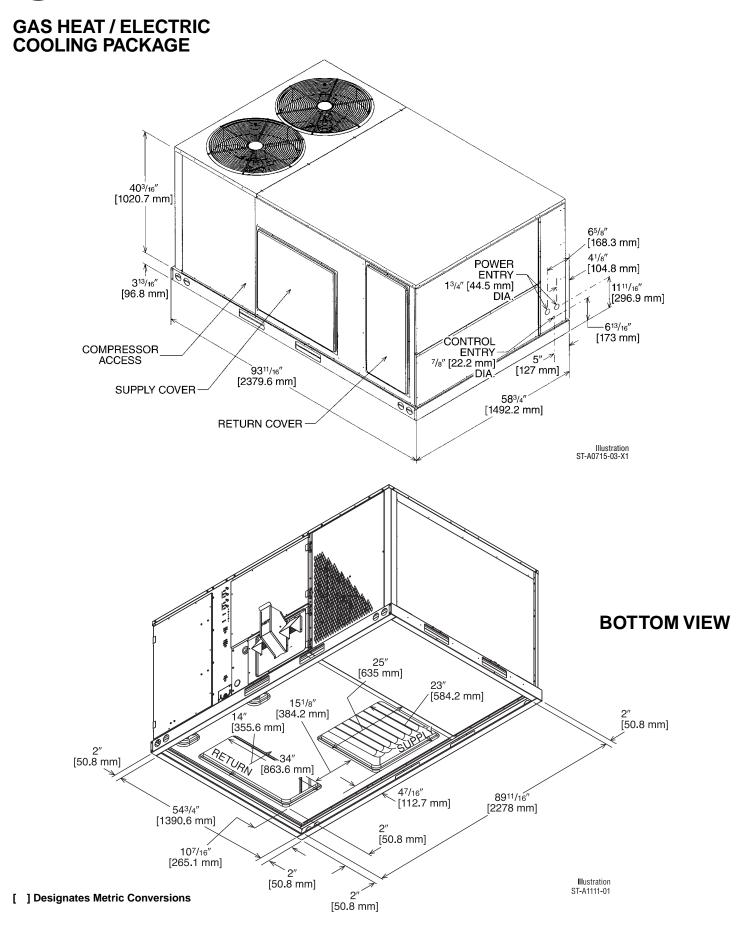
[] Designates Metric Conversions

COMPONENT AIR RESISTANCE, IWC 12.5 TON [44.0 kW]

			Standard Inc	door Airflow	Standard Indoor Airflow—CFM [L/s]		
Component	3800 [1793]	4000 [1888]	4200 [1982]	4400 [2076]	4600 [2171]	4800 [2265]	5000 [2359]
			Resistance	Resistance-Inches Water [kPa]	/ater [kPa]		
	0.08	0.09	0.09	0.10	0.10	0.11	0.11
	[.02]	[.02]	[.02]	[.02]	[.02]	[:03]	[:03]
	0.07	0.06	0.06	0.05	0.05	0.05	0.05
	[.02]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]
Downflow Economizer	0.12	0.13	0.14	0.15	0.16	0.17	0.18
R.A. Damper Open	[:03]	[:03]	[:03]	[.04]	[.04]	[.04]	[.04]
Horizontal Economizer	0.07	0.07	0.08	0.08	0.09	0.10	0.10
R.A. Damper Open	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]
Concentric Grill RXRN-AD80 or	0.19	0.21	0.24	0.27	0.30	0.33	0.36
RXRN-AD81 & Transition RXMC-CJ07	[:05]	[:05]	[90.]	[.07]	[.07]	[.08]	[60.]
NOTE: Add commonant reciptures to duct reciptures to datarming total averual etatic processo	duct rocieta	nco to doto	rmino total	ovtornal eta	tic procent		

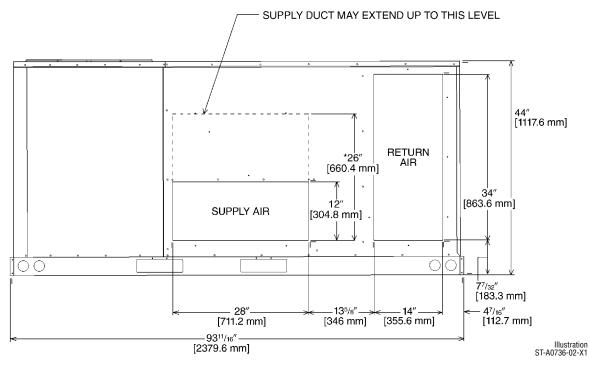
NULE: Add component resistance to duct resistance to determine total external static pressure

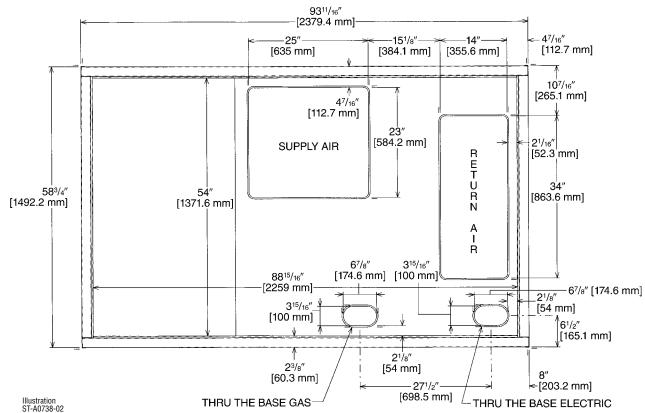
ELECTRICAL DATA—SKNL- SERIES


			ELECTRIC	AL DATA -	SKNL SEF	RIES			
		B072NL	B072NM	B072PL	B090NL	B090NM	B090PL	B102NL	B102NM
_	Unit Operating Voltage Range	342-456	45-342	180-242	342-456	342-456	180-242	342-456	342-456
atio	Volts	380/415	380/415	200/220	380/415	380/415	200/220	380/415	380/415
l ü	Minimum Circuit Ampacity	18/0	18/0	37/37	24/24	24/24	48/48	26/26	26/26
Unit Information	Minimum Overcurrent Protection Device Size	20/0	20/0	40/40	25/25	25/25	50/50	30/30	30/30
	Maximum Overcurrent Protection Device Size	25/0	25/0	50/50	30/30	30/30	60/60	30/30	30/30
	No.	1	1	1	2	2	2	2	2
	Volts	380/415	380/415	200/220	380/415	380/415	200/220	380/415	380/415
Compressor Motor	Phase	3	3	3	3	3	3	3	3
	RPM	2900	2900	2900	2900	2900	2900	2900	2900
	HP, Compressor 1	5	5	5	3 1/4	3 1/4	3 1/4	3 3/4	3 3/4
	Amps (RLA), Comp. 1	9.6/9.6	9.6/9.6	20.5/22.9	6/6	6/6	12.6/12.6	7.1/7.1	7.1/7.1
	Amps (LRA), Comp. 1	67/74	67/74	155/170	43/43	43/43	80.7/80.7	43/48	43/48
	HP, Compressor 2				3 1/4	3 1/4	3 1/4	3 3/4	3 3/4
	Amps (RLA), Comp. 2				6/6	6/6	12.6/12.6	7.1/7.1	7.1/7.1
	Amps (LRA), Comp. 2				43/43	43/43	80.7/80.7	43/48	43/48
or	No.	2	2	2	2	2	2	2	2
Mot	Volts	380/415	380/415	200/220	380/415	380/415	200/220	380/415	380/415
sor	Phase	1	1	1	1	1	1	1	1
Compressor Motor	HP	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
	Amps (FLA, each)	1.4/1.4	1.4/1.4	2.4/2.4	1.4/1.4	1.4/1.4	1.4/1.4	1.4/1.4	1.4/1.4
ö	Amps (LRA, each)	2.4/2.4	2.4/2.4	4.7/4.7	2.4/2.4	2.4/2.4	2.4/2.4	2.4/2.4	2.4/2.4
	No.	1	1	1	1	1	1	1	1
Fan	Volts	380/415	380/415	200/220	380/415	380/415	200/220	380/415	380/415
tor	Phase	3	3	3	3	3	3	3	3
Evaporator Fan	HP	1 1/2	1 1/2	1 1/2	3	3	3	3	3
Eval	Amps (FLA, each)	2.8/2.8	2.8/2.8	5.6/5.6	7/7	7/7	13/13	7/7	7/7
	Amps (LRA, each)	14.4/14.4	14.4/14.4	28.8/28.8	38.1/38.1	38.1/38.1	74.5/74.5	38.1/38.1	38.1/38.1

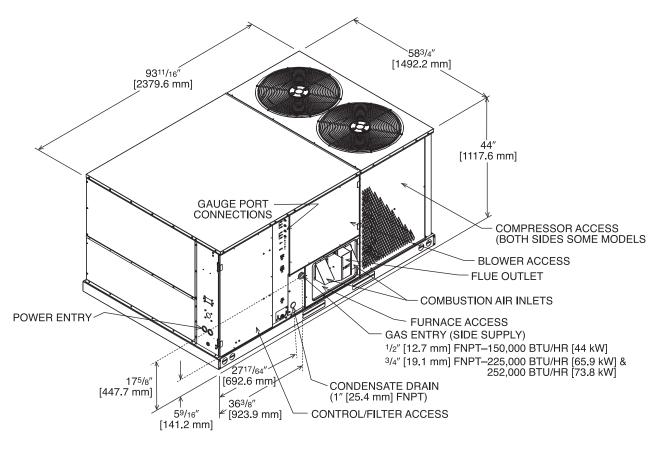
ELECTRICAL DATA—SKNL- SERIES

		E	LECTRICAL	DATA – SKN	L SERIES			
		B102PL	B120NL	B120NM	B120PL	B151NL	B151NM	B151PL
_	Unit Operating Voltage Range	180-242	342-456	342-456	180-242	342-546	342-456	180-242
atior	Volts	200/220	380/415	380/415	200/220	380/415	380/415	200/220
u ni	Minimum Circuit Ampacity	54/54	28/28	28/28	54/54	36/36	36/36	71/71
Unit Information	Minimum Overcurrent Protection Device Size	55/55	30/30	30/30	55/55	40/40	40/40	75/75
Π	Maximum Overcurrent Protection Device Size	60/60	35/35	35/35	60/60	45/45	45/45	90/90
	No.	2	2	2	2	2	2	2
	Volts	200/220	380/415	380/415	200/220	380/415	380/415	200/220
Compressor Motor	Phase	3	3	3	3	3	3	3
	RPM	2900	2900	2900	2900	2900	2900	2900
	HP, Compressor 1	3 3/4	4 1/4	4 1/4	4 1/4	5 3/4	5 3/4	5 3/4
	Amps (RLA), Comp. 1	14.5/14.5	7.8/7.8	7.8/7.8	15.3/15.3	10.6/10.6	10.6/10.6	22.4/22.4
	Amps (LRA), Comp. 1	94/105	47/51.5	47/51.5	110/110	67/74	67/74	149/149
	HP, Compressor 2	3 3/4	4 1/4	4 1/4	4 1/4	5 1/4	5 1/4	5 1/4
	Amps (RLA), Comp. 2	14.5/14.5	7.8/7.8	7.8/7.8	15.3/15.3	9.7/9.7	9.7/9.7	19/19
	Amps (LRA), Comp. 2	94/105	47/51.5	47/51.5	110/110	58/62	58/62	122/135
۲.	No.	2	2	2	2	2	2	2
Noto	Volts	200/220	380/415	380/415	200/220	380/415	380/415	200/220
er N	Phase	1	1	1	1	1	1	1
Condenser Motor	HP	1/3	1/3	1/3	1/3	1/2	1/2	1/2
ond	Amps (FLA, each)	2.4/2.4	1.4/1.4	1.4/1.4	2.4/2.4	1.5/1.5	1.5/1.5	2.3/2.3
0	Amps (LRA, each)	4.7/4.7	2.4/2.4	2.4/2.4	4.7/4.7	3.1/3.1	3.1/3.1	5.6/5.6
_	No.	1	1	1	1	1	1	1
Fan	Volts	200/220	380/415	380/415	200/220	380/415	380/415	200/220
itor	Phase	3	3	3	3	3	3	3
Evaporator Fan	HP	3	3	3	3	5	5	5
Eva	Amps (FLA, each)	13/13	7/7	7/7	13/13	10/10	10/10	18.8/18.8
_	Amps (LRA, each)	74.5/74.5	38.1/38.1	38.1/38.1	74.5/74.5	41.3/41.3	41.3/41.3	82.6/82.6




GAS HEAT / ELECTRIC COOLING PACKAGE

SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATIONS

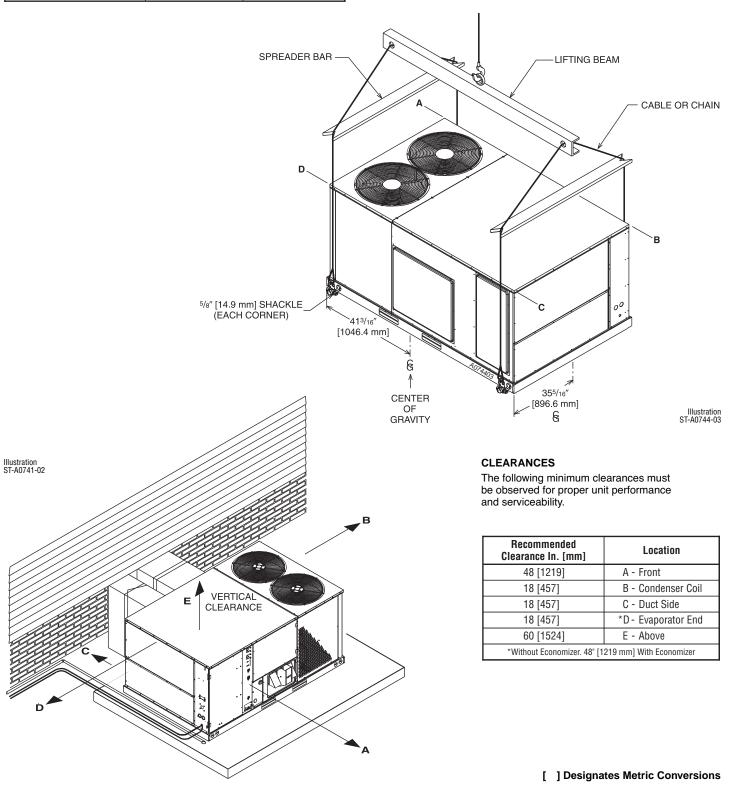

*RECOMMENDED DUCT DIMENSIONS ARE 26"

SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS

GAS HEAT / ELECTRIC COOLING PACKAGE

[] Designates Metric Conversions

Illustration ST-A1111-03


UNIT DIMENSIONS—SKNL- SERIES

WEIGHTS

Accessory	Shipping—lbs [kg]	Operating—lbs [kg]
Economizer	90 [40.82]	81 [36.70]
Power Exhaust	44 [19.96]	42 [19.05]
Fresh Air Damper (Manual)	26 [11.79]	21 [9.53]
Fresh Air Damper (Motorized)	43 [19.50]	38 [17.24]
Roof Curb 14"	90 [40.82]	85 [38.60]
Roof Curb 24"	140 [63.50]	135 [61.23]

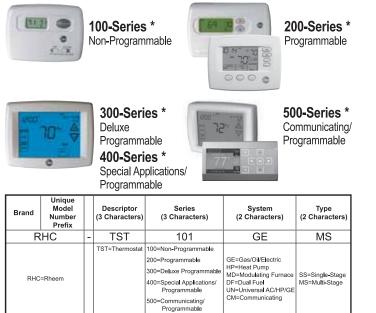
Capacity Tons [kW]	Corner	Weights	by Perc	entage
	Α	В	С	D
6-12.5 [21.1-44.0]	33%	27%	17%	23%

FIELD INSTALLED ACCESSORY EQUIPMENT

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?
Thermostats	See Thermostat Specif	ication Sheet for Deta	ils (T11-001)	No
Economizer w/Single Enthalpy (Downflow)	RXRD-PDCM3	90 [40.8]	81 [36.7]	Yes
Economizer w/Single Enthalpy and Smoke Detector (Downflow)	RXRD-SDCM3	91 [41.3]	82 [37.2]	Yes
Dual Enthalpy Kit	RXRX-AV02	1 [.5]	1 [.5]	No
Horizontal Economizer w/Single Enthalpy	RXRD-RDCM3	94 [42.6]	89 [40.4]	No
Carbon Dioxide Sensor (Wall Mount)	RXRX-AR02	3 [1.4]	2 [1.0]	No
Manual Fresh Air Damper (Horizontal Return Mounted)	RXRF-JDA1	26 [11.8]	21 [9.5]	No
Manual Fresh Air Damper (Left Panel Mounted)	RXRF-KDA1	38 [17.2]	31 [14.1]	No
Motor Kit for RXRF-KDA1 (Left Panel Mounted)	RXRX-AW02	35 [15.9]	27 [12.2]	No
Motorized Fresh Air Damper (Horizontal Return Mounted)	RXRF-JDB1	43 [19.5]	38 [17.2]	No
Roofcurb, 14"	RXKG-CAE14	90 [40.8]	85 [38.5]	No
Roofcurb, 24"	RXKG-CAE24	140 [63.5]	135 [61.2]	No
	RXRX-CDCE50	300 [136.1]	290 [131.5]	No
Roofcurb Adapters	RXRX-CFCE54	325 [147.4]	315 [142.9]	No
RUDICUID Adapters	RXRX-CFCE56	350 [158.8]	340 [154.2]	No
	RXRX-CGCC12	450 [204.1]	410 [186.0]	No
Concentric Diffuser (Step-Down, 20" Round)	RXRN-FA65	139 [63.0]	60 [27.2]	No
Concentric Diffuser (Step-Down, 18 x 28)	RXRN-AA61	200 [90.7]	185 [83.9]	No
Concentric Diffuser (Step-Down, 18 x 32)	RXRN-AA66	247 [112.0]	227 [103.0]	No
Concentric Diffuser (Flush, 20" Round)	RXRN-FA75	54 [24.4]	42 [19.0]	No
Concentric Diffuser (Flush, 18 x 28)	RXRN-AA71	170 [77.1]	155 [70.3]	No
Concentric Diffuser (Flush, 18 x 32)	RXRN-AA76	176 [79.8]	161 [73.0]	No
Downflow Transition (Rect. to 20" Round)	RXMC-CD04 ①	15 [6.8]	13 [5.9]	No
Downflow Transition (Rect. to Rect., 18 x 28)	RXMC-CE05 2	18 [8.2]	16 [7.3]	No
Downflow Transition (Rect. to Rect., 18 x 32)	RXMC-CF06 3	20 [9.1]	18 [8.2]	No
Compressor Time-Delay Relay Kit	RXMD-A04	2 [1.0]	1 [.5]	No
Low-Ambient Control Kit (1 Per Compressor)	RXRZ-C02	3 [1.4]	2 [1.0]	Yes
Freeze-Stat Kit	RXRX-AM01	1 [.5]	0.5 [.2]	Yes
Outdoor Coil Louver Kit	RXRX-AAD01C (6-10 Ton)	29 [11.3]	26 [11.8]	Yes
Outdoor Coil Louver Kit	RXRX-AAD02A (12.5 Ton)	29 [11.3]	26 [11.8]	Yes
Unwired Convenience Outlet	RXRX-AN01	2 [1.0]	1.5 [.7]	Yes
Unfused Service Disconnect	RXRX-AP01	10 [4.5]	9 [4.1]	Yes

NOTES: ① Used with RXRN-FA65 and RXRN-FA75 concentric diffusers.

② Used with RXRN-AA61 and RXRN-AA71 concentric diffusers.

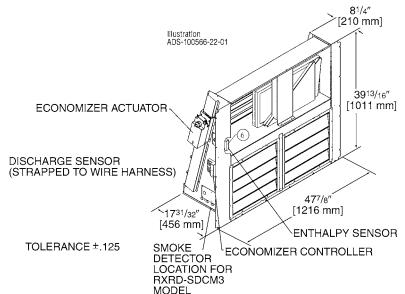

3 Used with RXRN-AA66 and RXRN-AA76 concentric diffusers.

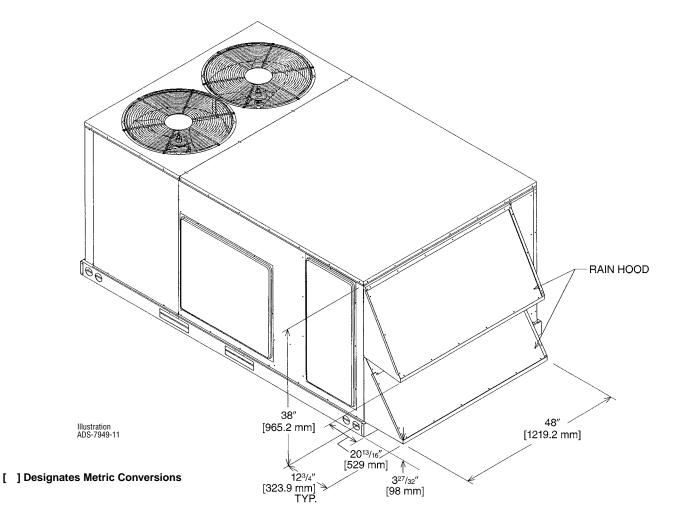
NOTICE: Please refer to conversion kit index provided with the unit for LP conversion kit.

ACCESSORIES

THERMOSTATS

* Photos are representative. Actual models may vary. For detailed thermostat match-up information, see specification sheet form number T11-001.

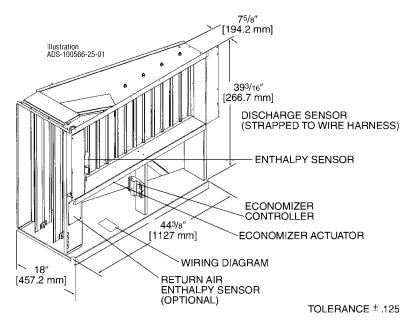


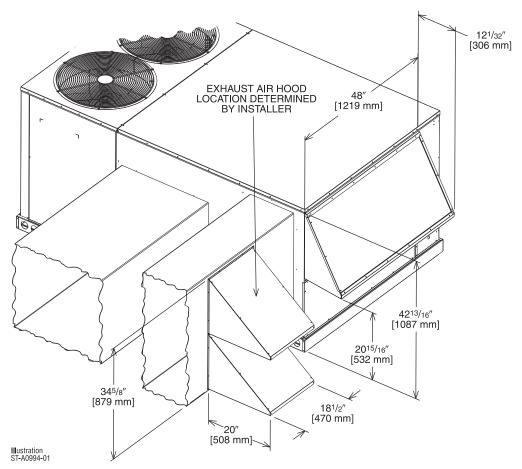

ECONOMIZER FOR DOWNFLOW DUCT INSTALLATION

Use to Select Factory Installed Options Only

RXRD-PDCM3—Single Enthalpy (Outdoor) and RXRD-SDCM3 Single Enthalpy with Smoke Detector RXRX-AV02—Dual Enthalpy Upgrade Kit RXRX-AR02—Optional Wall-Mounted CO₂ Sensor

- Features Honeywell Controls
- Available Factory Installed or Field Accessory
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin Electrical Connections
- Pre-Configured—No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Downflow Duct Application.
- Optional Remote Minimum Position Potentiometer (Honeywell #S963B1128) is Available from Prostock.
- Prewired for Smoke Detector




ECONOMIZER FOR HORIZONTAL DUCT INSTALLATION

Field Installed Only

RXRD-RDCM3—Single Enthalpy (Outdoor) RXRX-AV02—Dual Enthalpy Upgrade Kit RXRX-AR02—Wall-mounted CO₂ Sensor

- Features Honeywell Controls
- Available as a Field Installed Accessory Only
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin Electrical Connections
- Pre-Configured—No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Horizontal Duct Application
- Optional Remote Minimum Position Potentiometer (Honeywell #S963B1128) is Available from Prostock

FRESH AIR DAMPER

MOTORIZED DAMPER KIT RXRX-AW02 (Motor Kit for RXRF-KDA1)

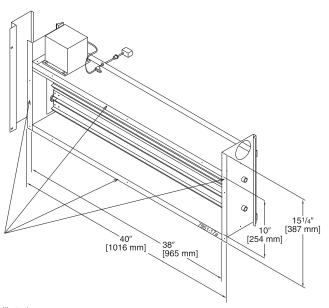
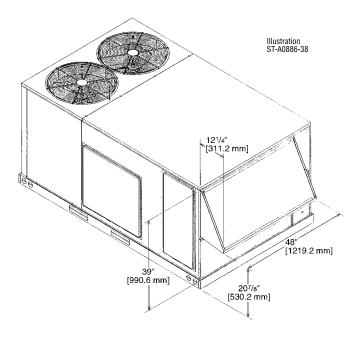
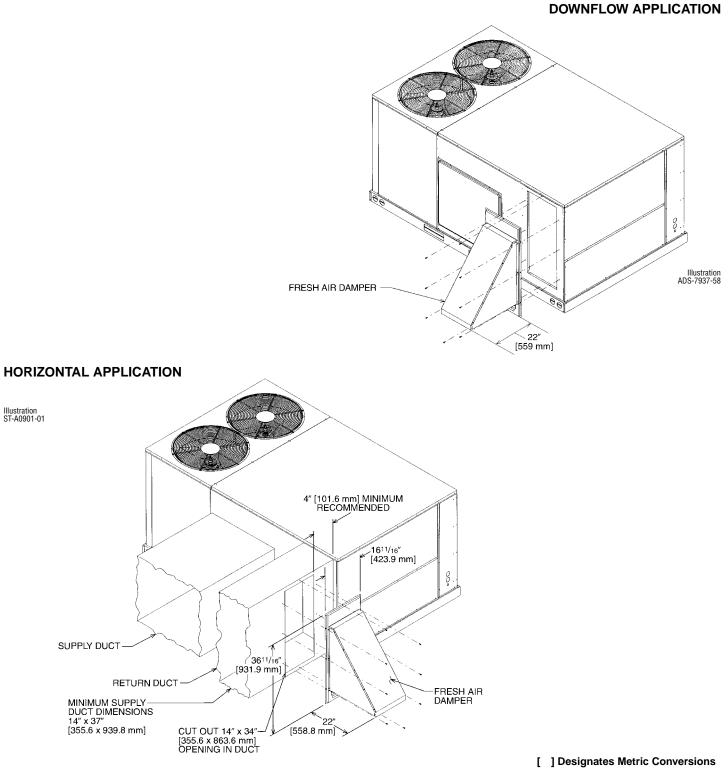



Illustration ST-7951-17

[] Designates Metric Conversions

RXRF-KDA1 (Manual)


DOWNFLOW OR HORIZONTAL APPLICATION

FRESH AIR DAMPER (Cont.)

RXRF-JDA1 (Manual) RXRF-JDB1 (Motorized)

ROOFCURBS (Full Perimeter)

- Rheem's roofcurb design can be utilized on all 6-12.5 ton [21.1-44.0 kW] SKNL- models.
- Two available heights (14" [356 mm] and 24" [610 mm]) for ALL models.
- Quick assembly corners for simple and fast assembly.
- Opening provided in bottom pan to match the "Thru the Curb" electrical connection opening provided on the unit base pan.
- 1" [25 mm] x 4" [102 mm] Nailer provided.
- Insulating panels not required because of insulated outdoor base pan.

889/16"

[2249.5 mm]

8413/16

[2154.3 mm]

411/16"-

[1043 mm]

HINGED

CORNERS

Illustration ADS-102932-03-00

- Sealing gasket (40' [12.2 m]) provided with Roofcurb.
- Packaged for easy field assembly.

ROOFCURB INSTALLATION

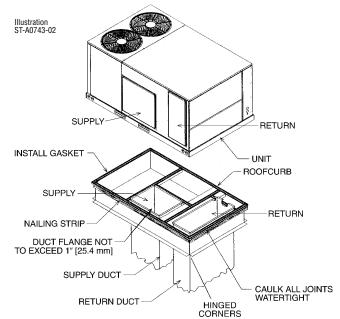
53^{3/8"} [1355.7 mm]

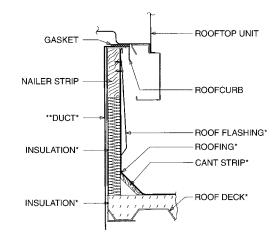
49⁵/8" [1260.5 mm]

Roofcurb Model	Height of Curb
RXKG-CAE14	14" [356 mm]
RXKG-CAE24	24" [610 mm]

×293/4′

[755.7 mm]


2013/16


[523.6 mm]

24"

[609.6 mm]

*BY CONTRACTOR

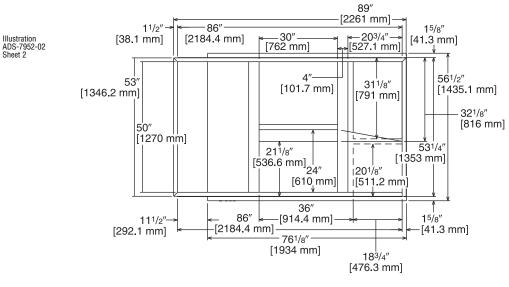
**FOR INSTALLATION OF DUCT AS SHOWN, USE RECOMMENDED DUCT SIZES FROM ROOFCURB INSTALLATION INSTRUCTIONS. FOR DUCT FLANGE ATTACHMENT TO UNIT, SEE UNIT INSTALLATION INSTRUCTIONS FOR RECOMMENDED DUCT SIZES.

Illustration ST-A0743-02

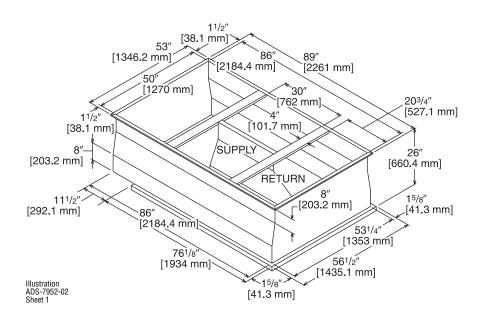
[] Designates Metric Conversions

4 OR 24"

[355.6 OR 609.6 mm]

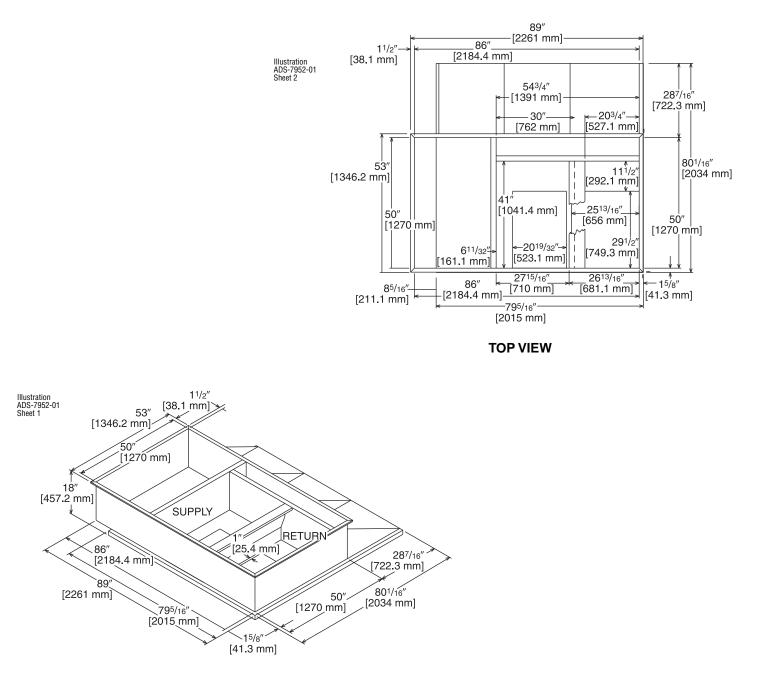

ROOFCURB ADAPTERS

OLD MODELS	OLD ROOFCURB	ROOFCURB ADAPTER	NEW MODELS (All Share Common Cabinet)
(-)RCF, (-)REF-075/076 (-)RGF-150075, (-)RGF-131076 (-)RGF-201076	RXRK-E50	RXRX-CDCE50	
(-)RGF-200075 (-)RGG, (-)REG, (-)RCG-075 (-)RGF, (-)REF, (-)RCF-085 (-)RGF, (-)REF, (-)RCF-100 (-)RGG, (-)REG, (-)RCG-100	RXRK-E54	RXRX-CFCE54	► SKNL- B072, B090, B102, B120, B151
(-)RGF, (-)REF, (-)RCF-125	RXRK-E56	RXRX-CFCE56	
(-)PDC-075 (-)PDC-100/101	RXPK-C12	RXRX-CGCC12	


NOTE: Ductwork modifications may be necessary if the capacity and/or indoor airflow rate of replacement unit is not equivalent to that of the unit being replaced. SKNL-B072, B090, B102, B120, B151 fit on the same curb as the RKKB-A090, A102, A120, A150, A181, RKMB- A090, A102, A120, A150, RKNB- A090, A102, A120

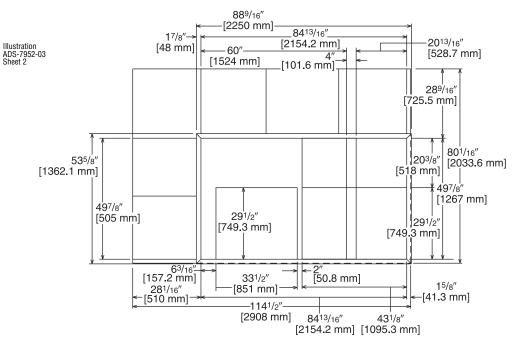
ROOFCURB ADAPTERS (Cont.)

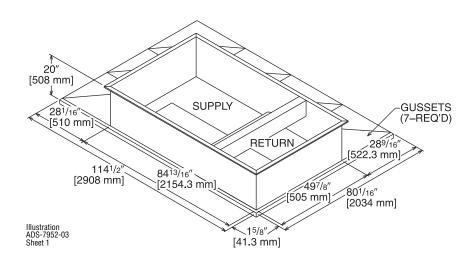
RXRX-CDCE50



[] Designates Metric Conversions

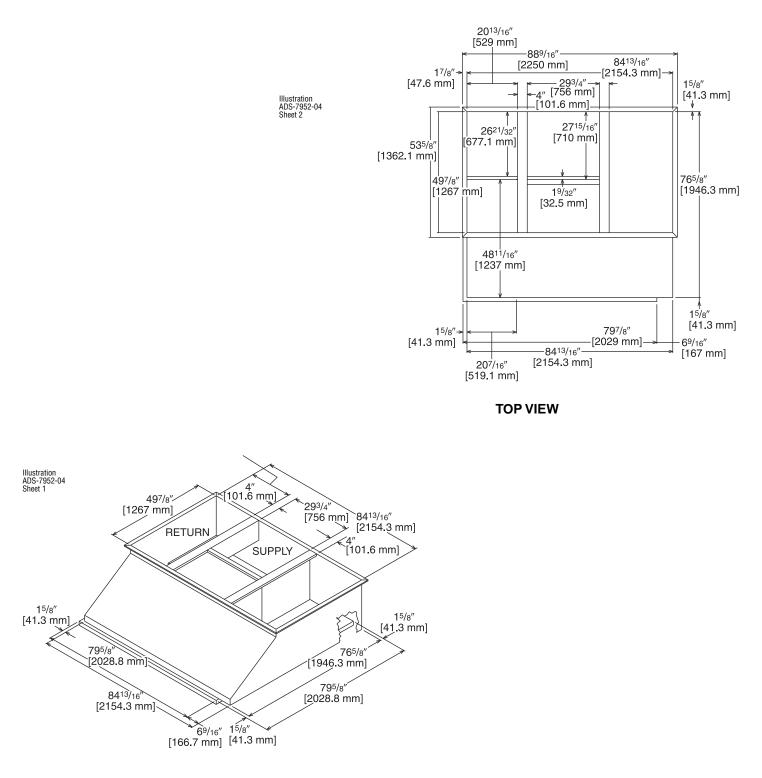
ROOFCURB ADAPTERS (Cont.)

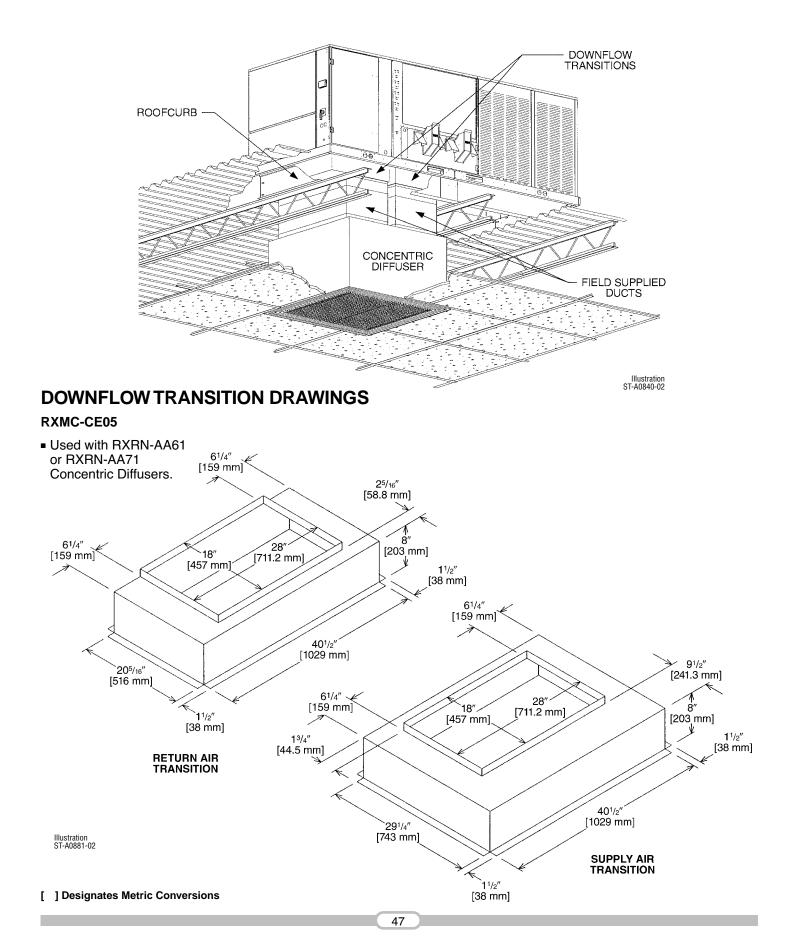

RXRX-CFCE54



ROOFCURB ADAPTERS (Cont.)

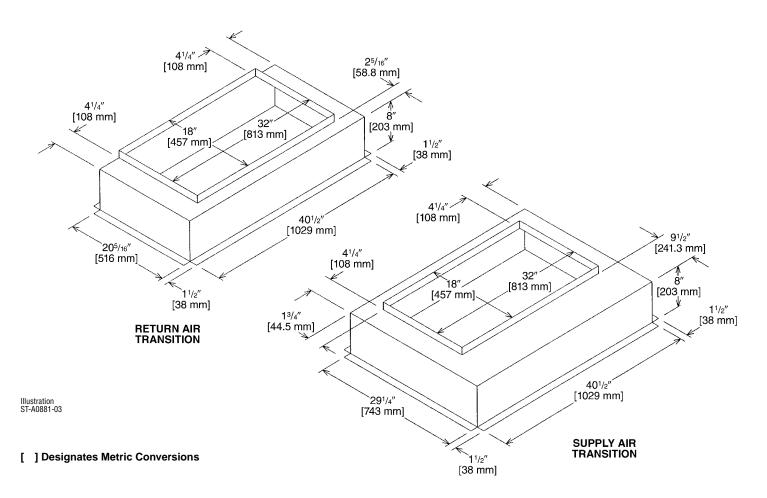
RXRX-CFCE56


TOP VIEW


ROOFCURB ADAPTERS (Cont.)

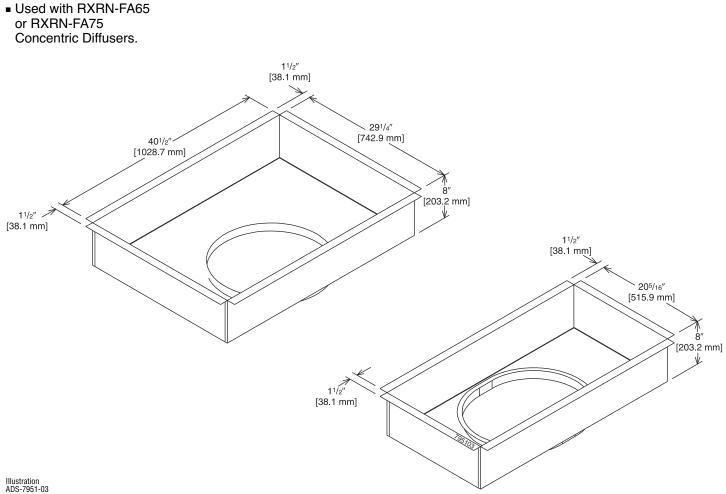
RXRX-CGCC12

CONCENTRIC DIFFUSER APPLICATION



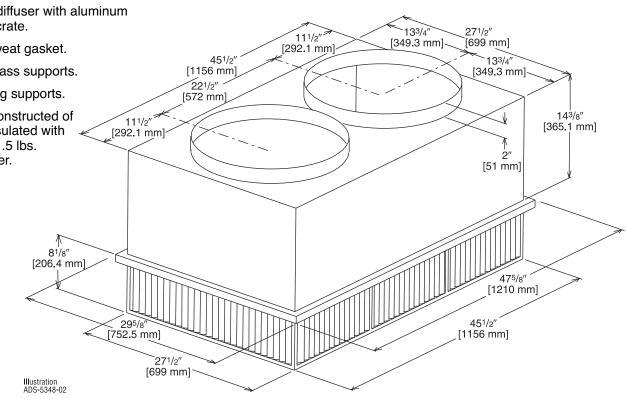
DOWNFLOW TRANSITION DRAWINGS (Cont.)

RXMC-CF06


 Used with RXRN-AA66 or RXRN-AA76 Concentric Diffusers.

DOWNFLOW TRANSITION DRAWINGS (Cont.)

RXMC-CD04



CONCENTRIC DIFFUSER—STEP DOWN

RXRN-FA65 (7.5 & 8.5 Ton [26.4 & 29.9 kW] Models)

For Use With Downflow Transition (RXMC-CD04) and 20" [508 mm] Round Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs. [.7 kg] duct liner.

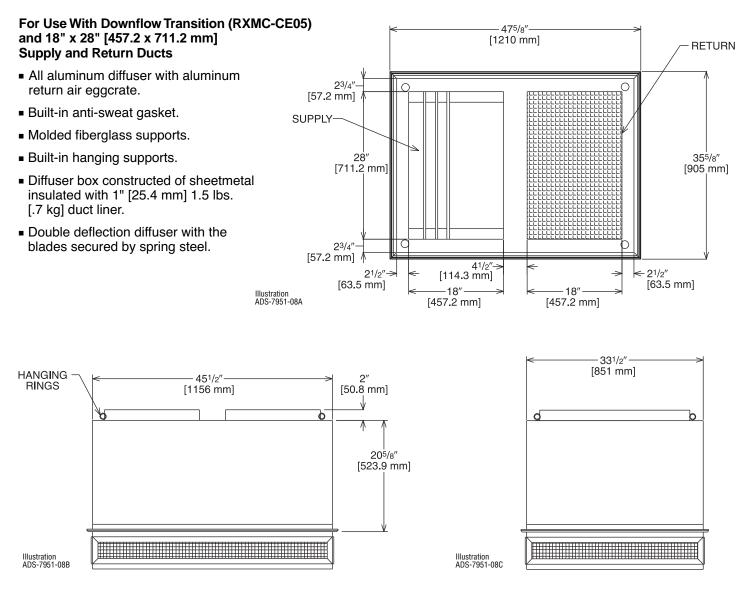
ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in. w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	2600 [1227]	0.17 [0.042]	24-29 [7.3-8.8]	669 [3.4]	20
	2800 [1321]	0.20 [0.050]	25-30 [7.6-9.1]	720 [3.7]	25
RXRN-FA65	3000 [1416]	0.25 [0.062]	27-33 [8.2-10.1]	772 [3.9]	25
	3200 [1510]	0.31 [0.077]	28-35 [8.5-10.7]	823 [4.2]	25
	3400 [1604]	0.37 [0.092]	30-37 [9.1-11.3]	874 [4.4]	30

NOTES: 1 All data is based on the air diffusion council guidelines.

⁽²⁾ Throw data is based on 75 FPM Terminal Velocities using isothermal air.

③ Throw is based on diffuser blades being directed in a straight pattern.


(4) Actual noise levels may vary due to duct design and do not include transmitted unit noise.

Adequate duct attenuation must be provided to reduce sound output from the unit.

CONCENTRIC DIFFUSER—STEP DOWN 18" x 28" [457.2 x 711.2 mm]

RXRN-AA61 (8.5 & 10 Ton [29.9 kW & 35.2] Models)

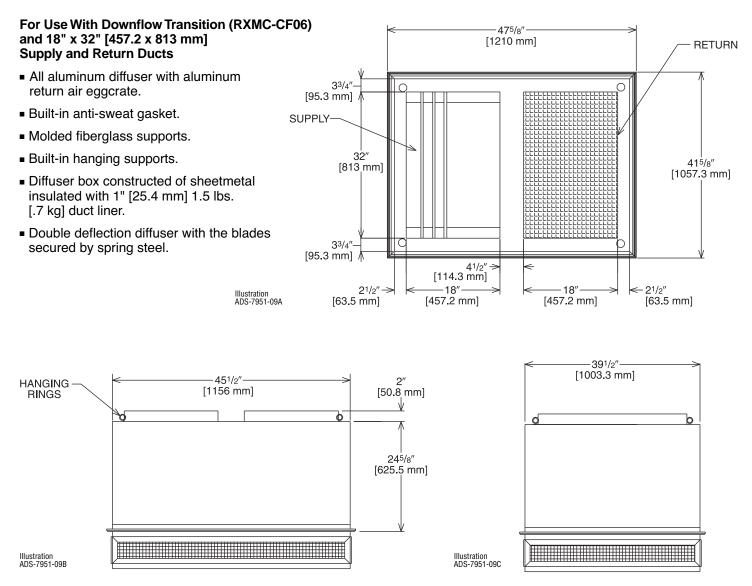
ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw © 3 Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	3600 [1699]	0.17 [0.042]	25-33 [7.6-10.1]	851 [4.3]	30
	3800 [1793]	0.18 [0.045]	27-35 [8.2-10.7]	898 [4.6]	30
RXRN-AA61	4000 [1888]	0.21 [0.052]	29-37 [8.8-11.3]	946 [4.8]	30
	4200 [1982]	0.24 [0.060]	32-40 [9.8-12.2]	993 [5.0]	30
	4400 [2076]	0.27 [0.067]	34-42 [10.4-12.8]	1040 [5.3]	30

NOTES: ① All data is based on the air diffusion council guidelines.

⁽²⁾ Throw data is based on 75 FPM Terminal Velocities using isothermal air.

③ Throw is based on diffuser blades being directed in a straight pattern.


(4) Actual noise levels may vary due to duct design and do not include transmitted unit noise.

Adequate duct attenuation must be provided to reduce sound output from the unit.

CONCENTRIC DIFFUSER—STEP DOWN 18" x 32" [457.2 x 813 mm]

RXRN-AA66 (12.5 & 15 Ton [44.0 & 52.8 kW] Models)

ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	4600 [2171]	0.31 [0.077]	26-31 [7.9-9.4]	841 [4.3]	30
	4800 [2265]	0.32 [0.080]	27-32 [8.2-9.8]	878 [4.5]	30
RXRN-AA66	5000 [2359]	0.34 [0.085]	28-33 [8.5-10.1]	915 [4.6]	30
	5200 [2454]	0.36 [0.090]	28-34 [8.5-10.4]	951 [4.8]	30
	5400 [2548]	0.39 [0.097]	29-35 [8.8-10.7]	988 [6.0]	30

NOTES: 1) All data is based on the air diffusion council guidelines.

⁽²⁾ Throw data is based on 75 FPM Terminal Velocities using isothermal air.

③ Throw is based on diffuser blades being directed in a straight pattern.

(4) Actual noise levels may vary due to duct design and do not include transmitted unit noise.

Adequate duct attenuation must be provided to reduce sound output from the unit.

13¹/2"

[343 mm]

27'

[686 mm]

131/2" [343 mm]

 \downarrow

2 [51 mm] 165/8"

[422.3 mm]

FLUSH MOUNT CONCENTRIC DIFFUSER—FLUSH

ڑ " 11¹/4 [286 mm]

RXRN-FA75 (7.5 & 8.5 Ton [26.4 & 29.9 kW] Models)

For Use With Downflow Transition (RXMC-CD04) and 20" [508 mm] Round Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs. [.7 kg] duct liner.

Illustration ADS-5348-04	29 ⁵ /8″ [753 mm]		475/8″ [1210 mm]
		~	
)		

⁷‴][286 mm]

45″

[1143 mm]

221/2 [572 mm]

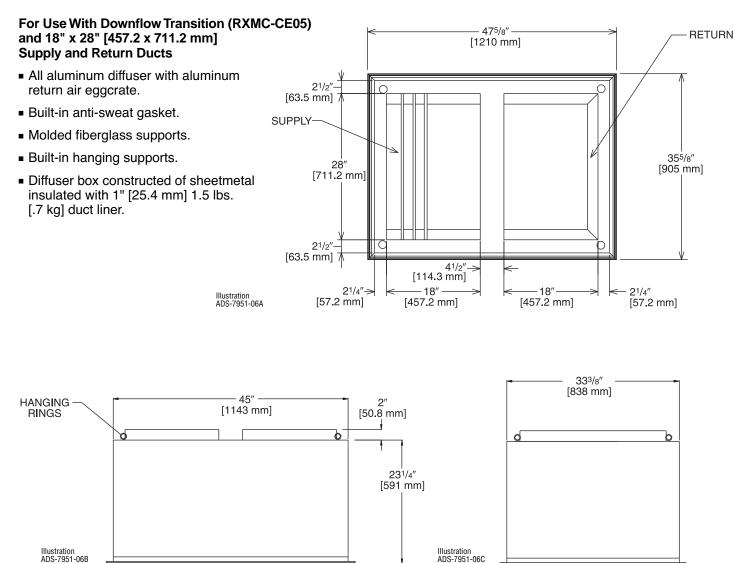
ENGINEERING DATA

Model No.	Flow Rate CFM [L/s]	Static Pressure in. w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	2600 [1227]	.17 [0.042]	19-24 [5.8-7.3]	663 [3.4]	30
	2800 [1321]	.20 [0.050]	20-28 [6.1-8.5]	714 [3.6]	35
RXRN-FA75	3000 [1416]	.25 [0.062]	21-29 [6.4-8.8]	765 [3.9]	35
	3200 [1510]	.31 [0.077]	22-29 [6.7-8.8]	816 [4.1]	40
	3400 [1604]	.37 [0.092]	22-30 [6.7-9.1]	867 [4.4]	40

NOTES: 1) All data is based on the air diffusion council guidelines.

⁽²⁾ Throw data is based on 75 FPM Terminal Velocities using isothermal air.

③ Throw is based on diffuser blades being directed in a straight pattern.


(4) Actual noise levels may vary due to duct design and do not include transmitted unit noise.

Adequate duct attenuation must be provided to reduce sound output from the unit.

CONCENTRIC DIFFUSER—FLUSH and 18" x 28" [457.2 x 711.2 mm]

RXRN-AA71 (8.5 & 10 Ton [29.9 & 35.2] Models)

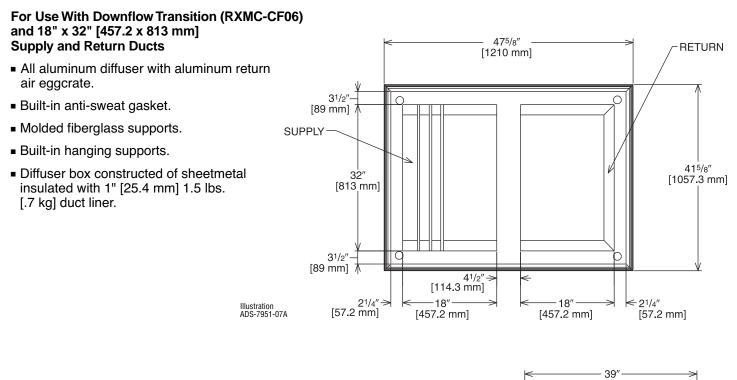
ENGINEERING DATA[®]

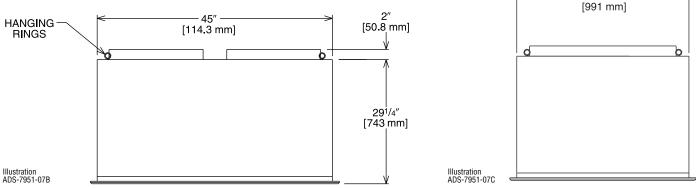
Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	3600 [1699]	0.17 [0.042]	22-29 [6.7-8.8]	844 [4.3]	35
	3800 [1793]	0.18 [0.045]	22-30 [6.7-9.1]	891 [4.5]	40
RXRN-AA71	4000 [1888]	0.21 [0.052]	24-33 [7.3-10.1]	938 [4.8]	40
	4200 [1982]	0.24 [0.060]	26-35 [7.9-10.7]	985 [5.0]	40
	4400 [2076]	0.27 [0.067]	28-37 [8.5-11.3]	1032 [5.2]	40

NOTES: 1 All data is based on the air diffusion council guidelines.

⁽²⁾ Throw data is based on 75 FPM Terminal Velocities using isothermal air.

③ Throw is based on diffuser blades being directed in a straight pattern.


(4) Actual noise levels may vary due to duct design and do not include transmitted unit noise.


Adequate duct attenuation must be provided to reduce sound output from the unit.

CONCENTRIC DIFFUSER—FLUSH 18" x 32" [457.2 x 813 mm]

RXRN-AA76 (12.5 & 15 Ton [44.0 & 52.8 kW] Models)

ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	4600 [2171]	0.31 [0.077]	25-34 [7.6-10.4]	922 [4.7]	40
	4800 [2265]	0.32 [0.080]	26-35 [7.9-10.7]	962 [4.9]	40
RXRN-AA76	5000 [2359]	0.34 [0.085]	27-36 [8.2-11.0]	1002 [5.1]	40
	5200 [2454]	0.36 [0.090]	30-39 [9.1-11.9]	1043 [5.3]	45
	5400 [2548]	0.39 [0.097]	32-41 [9.8-12.5]	1083 [5.5]	45

NOTES: ① All data is based on the air diffusion council guidelines.

⁽²⁾ Throw data is based on 75 FPM Terminal Velocities using isothermal air.

③ Throw is based on diffuser blades being directed in a straight pattern.

(4) Actual noise levels may vary due to duct design and do not include transmitted unit noise.

Adequate duct attenuation must be provided to reduce sound output from the unit.

MECHANICAL SPECIFICATIONS—SKNL- SERIES

Guide Specifications SKNL-B072 - 151

Note about this specification: Copying this document directly into your building specification is permissible.

GAS HEAT PACKAGED ROOFTOP

HVAC Guide Specifications

Size Range: 6 to 121/2 Nominal Tons

Section Description

23 06 80 Schedules for Decentralized HVAC Equipment

23 06 80.13 Decentralized Unitary HVAC Equipment Schedule

23 06 80.13.A. Rooftop unit schedule

1. Schedule is per the project specification requirements.

23 07 16 HVAC Equipment Insulation

23 07 16.13 Decentralized, Rooftop Units:

- 23 07 16.13.A. Evaporator fan compartment:
 - 1. Interior cabinet surfaces shall be insulated with a minimum 3/4-in. thick, minimum 1-1/2 lb density, flexible fiberglass insulation bonded with foil face on the air side.
 - 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
 - 3. Insulation shall also be mechanically fastened with welded pin and retainer washer.

23 07 16.13.B. Gas heat compartment:

- 1. Aluminum foil-faced fiberglass insulation shall be used.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 3. Insulation shall also be mechanically fastened with welded pin and retainer washer.

23 09 13 Instrumentation and Control Devices for HVAC

23 09 13.23 Sensors and Transmitters:

- 23 09 13.23.A. Thermostats
 - 1. Thermostat must
 - a. energize both "W" and "G" when calling for heat.
 - b. have capability to energize 2 different stages of cooling, and 2 different stages of heating.
 - c. must include capability for occupancy scheduling.

23 09 33 Electric and Electronic Control System for HVAC

23 09 33.13 Decentralized, Rooftop Units:

- 23 09 13.13.A. General:
 - 1. Shall be complete with self-contained low-voltage control circuit protected by a fuse on the 24-V transformer side (B072-B151 units have a resettable circuit breaker).
 - 2. Shall utilize color-coded wiring.
 - 3. Unit shall be include self-contained low-voltage control circuit protected by a fuse on the 24-V transformer side with a resettable circuit breaker.
 - 4. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microprocessor. See heat exchanger section of this specification.
 - 5. Unit shall include a minimum of one 8-pin screw terminal connection board for connection of control wiring.

23 09 33.23.B. Safeties:

- 1. Compressor over-temperature, over current.
- 2. Low-pressure switch.

a. Units shall have low pressure, loss of charge automatic reset device that will shut off compressor when tripped.

- 3. High-pressure switch.
- a. Unit shall be equipped with high pressure switch manual reset device that will shut off compressor when tripped.
- 4. Automatic reset, motor thermal overload protector.
- 5. Heating section shall be provided with the following minimum protections:
 - a. High-temperature limit switches.
 - b. Induced draft motor pressure switch.
 - c. Flame rollout switch.
 - d. Flame proving controls.

23 09 33 Sequence of Operations for HVAC Controls

23 09 93.13 Decentralized, Rooftop Units:

23 09 93.13 INSERT SEQUENCE OF OPERATION

23 40 13 Panel Air Filters

23 40 13.13 Decentralized, Rooftop Units:

23 40 13.13.A. Standard filter section shall

- 1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
- 2. Unit shall use only one filter size. Multiple sizes are not acceptable.
- 3. Filter face velocity shall not exceed 365 fpm at nominal airflows.
- 4. Filters shall be accessible through an access panel with "no-tool" removal as described in the unit cabinet section of the specification (23 81 19.13.H).

23 81 19 Self-Contained Air Conditioners

23 81 19.13 (6-12.5 Ton) Capacity Self-Contained Air Conditioners

- 23 81 19.13.A. General
 - 1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and gas combustion for heating duty.
 - 2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
 - 3. Unit shall use environmentally safe, R410A refrigerant.
 - 4. Unit shall be installed in accordance with the manufacturer's instructions.
 - 5. Unit must be selected and installed in compliance with local, state, and federal codes.
- 23 81 19.13.B. Quality Assurance
 - 1. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
 - 2. Unit casing shall be capable of withstanding 1000-hour salt spray exposure per ASTM B117 (scribed specimen).
 - 3. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
 - 4. Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered by ISO 9001:2000.
 - 5. Roof curb shall be designed to conform to NRCA Standards.
 - 6. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
 - 7. Unit shall be designed in accordance with UL Standard 1995, including tested to withstand rain.
 - 8. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.
 - 9. Unit shake tested to assurance level 1, ASTM D4169 to ensure shipping reliability.
- 23 81 19.13.C. Delivery, Storage, and Handling
 - 1. Unit shall be stored and handled per manufacturer's recommendations.
 - 2. Lifted by crane requires either shipping top panel or spreader bars.
 - 3. Unit shall only be stored or positioned in the upright position.
- 23 81 19.13.E. Project Conditions
 - 1. As specified in the contract.
- 23 81 19.13.F. Operating Characteristics
 - 1. Unit shall be capable of starting and running at 115°F (46°C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 210/240 or 360 at ± 10% voltage.
 - Compressor with standard controls shall be capable of operation down to 50°F (10°C), ambient outdoor temperatures. Low
 ambient accessory kit is necessary if mechanically cooling at ambient temperatures to 0°F (-17.7°C).
 - 3. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.
 - 4. Unit shall be factory configured for vertical supply & return configurations.
 - 5. Unit shall be field convertible from vertical to horizontal configuration.
 - 6. Unit shall be capable of mixed operation: vertical supply with horizontal return or horizontal supply with vertical return.

MECHANICAL SPECIFICATIONS—SKNL- SERIES

23 81 19.13.G. Electrical Requirements

1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.

- 23 81 19.13.H. Unit Cabinet
 - 1. Unit cabinet shall be constructed of galvanized steel.
 - 2. Unit cabinet exterior paint shall be: powder coat paint.
 - 3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standards 210 or 360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 3/4-in. thick, 1-1/2 lb density, flexible fiberglass insulation, foil faced on the air side. Aluminum foil-faced fiberglass insulation shall be used in the gas heat compartment.
 - 4. Base of unit shall have a location for thru-the-base gas and electrical connections standard.

5. Base Rail

- a. Unit shall have base rails on a minimum of 4 sides.
- b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.
- c. Holes shall be provided in the base rail for moving the rooftop for fork truck.
- d. Base rail shall be a minimum of 14 gauge thickness.
- 6. Condensate pan and connections:
 - a. Shall be a sloped condensate drain pan made of a non-corrosive material and be removable for cleaning.
 - b. Shall comply with ASHRAE Standard 62.
 - c. Shall use a 1" 2 NPT drain connection, possible either through the bottom or side of the drain pan. Connection shall be made per manufacturer's recommendations.
 - d. Shall be able to be easily removed.

7. Top panel:

- a. Shall be a single piece top panel over indoor section.
- 8. Gas Connections:
 - a. All gas piping connecting to unit gas valve shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base gas-line location using a continuous raised, flange around opening in the basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 9. Electrical Connections
 - a. All unit power wiring shall enter unit cabinet a a single, factory-prepared, continuous raised flange opening in the basepan.
 - b. Thru-the-base capability
 - i. Standard unit shall have a thru-the-base electrical location(s) using a raised, continuous raised flange opening in the basepan.
 - ii. No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 10. Component access panels (standard)
 - a. Cabinet panels shall be easily opened for servicing.
 - b. Panels covering control box, indoor fan, indoor fan motor, gas components (where applicable), and filters shall have hinges with 1/4 turn fasteners.
 - c. 1/4 fasteners shall be permanently attached.
- 23 81 19.13.I. Gas Heat
 - 1. General
 - a. Heat exchanger shall be an induced draft design. Positive pressure heat exchanger designs shall not be allowed.
 - b. Shall incorporate a direct-spark ignition system and redundant main gas valve.
 - c. Heat exchanger design shall allow combustion process condensate to gravity drain; maintenance to drain the gas heat exchanger shall not be required.
 - d. Gas supply pressure at the inlet to the rooftop unit gas valve must match that required by the manufacturer.
 - 2. The heat exchanger shall be controlled by an integrated furnace controller (IFC) microcompressor.
 - a. IFC board shall notify users of fault using and LED (light-emitting diode).
 - b. The Light Emitting Diode (LED) shall be visible without opening the control box access panel.

- 3. Standard Heat Exchanger construction
 - a. Heat exchanger shall be of the tubular-section type constructed of a minimum of 20-gauge steel coated with a nominal 1.2 mil aluminum-silicone alloy for corrosion resistance.
 - b. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - c. Burners shall incorporate orifices for rated heat output up to 2000 ft (610m) elevation. Additional accessory kits may be required for applications above 2000 ft (610m) elevation, depending on local gas supply conditions.
 - d. Each heat exchanger tube shall contain tubulators for increased heating effectiveness.
- 4. Optional Stainless Steel Heat Exchanger construction
 - a. Use energy saving, direct-spark ignition system.
 - b. Use a redundant main gas valve.
 - c. Burners shall be of the in-shot type constructed of aluminum-coated steel.
 - d. All gas piping shall enter the unit cabinet at a single location on side of unit (horizontal plane).
 - e. The optional stainless steel heat exchanger shall be of the tubular-section type, constructed of a minimum of 20-gauge type 409 stainless steel.
 - f. Type 409 stainless steel shall be used in heat exchanger tubes.
 - g. Complete stainless steel heat exchanger allows for greater application flexibility.
- 5. Induced draft combustion motor and blower
 - a. Shall be a direct-drive, single inlet, forward-curved centrifugal type.
 - b. Shall be made from steel with a corrosion-resistant finish.
 - c. Shall be permanently lubricated sealed bearings.
 - d. Shall have inherent thermal overload protection.
 - e. Shall have an automatic reset feature.
- 23 81 19.13.J. Coils
 - 1. Standard Aluminum/Copper Coils:
 - a. Standard evaporator and condenser coils shall be aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed. (Note: 12-1/2 ton utilizes MicroChannel condensing coil).
 - b. Evaporator and condenser coils shall be leak tested to 150 psig, pressure tested to 400 psig, and qualified to UL 1995 burst test at 2,200 psi.
- 23 81 19.13.K. Refrigerant Components
 - 1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - a. TXV metering system shall prevent mal-distribution of two-phase refrigerant. B072 shall use orifice refrigerant control.
 - b. Refrigerant filter drier.
 - c. Service gauge connections on suction and discharge lines.
 - d. External pressure gauge ports access shall be located in front exterior of cabinet.
 - 2. Compressors
 - a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
 - b. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
 - c. Compressors shall be internally protected from high discharge temperature conditions.
 - d. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
 - e. Compressor shall be factory mounted on rubber grommets.
 - f. Compressor motors shall have internal line break thermal and current overload protection.
 - g. Crankcase heaters shall not be required for normal operating range.
 - h. Compressor shall have molded electrical plug.
- 23 81 19.13.L. Filter Section
 - 1. Filters access is specified in the unit cabinet section of this specification.
 - 2. Filters shall be held in place by filter tray, facilitating easy removal and installation.
 - 3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
 - 4. Filter face velocity shall not exceed 320 fpm at nominal airflows.
 - 5. Filters shall be standard, commercially available sizes.
 - 6. Only one size filter per unit is allowed.

MECHANICAL SPECIFICATIONS—SKNL-SERIES

23 81 19.13.M. Evaporator Fan and Motor

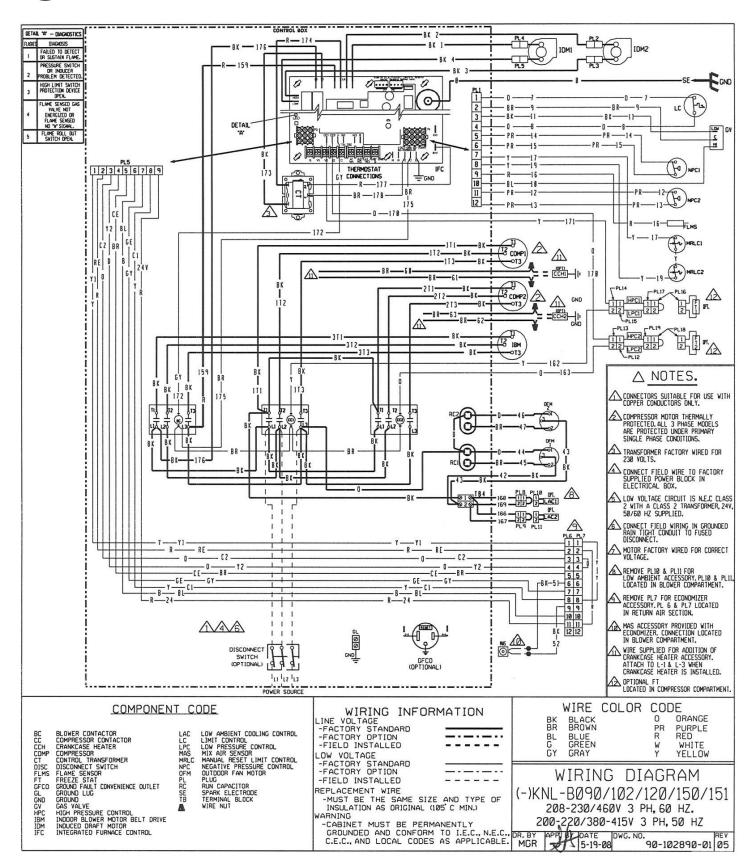
- 1. Evaporator fan motor:
 - a. Shall have permanently lubricated bearings
 - b. Shall have inherent automatic-reset thermal overload protection.
 - c. Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.
- 2. Belt-driven Evaporator Fan:
 - a. Belt drive shall include an adjustable-pitch motor pulley.
 - b. Shall use sealed, permanently lubricated ball-bearing type.
 - c. Blower fan shall be double-inlet type with forward-curved blades.
 - d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.
- 23 81 19.13.N. Condenser Fans and Motors
 - 1. Condenser fan motors:
 - a. Shall be a totally enclosed motor.
 - b. Shall use permanently lubricated bearings.
 - c. Shall have inherent thermal overload protection with an automatic reset feature.
 - d. Shall use a shaft-down design. Shaft-up designs including those with "rain-slinger devices" shall not be allowed.
 - 2. Condenser Fans shall:
 - a. Shall be a direct-driven propeller type fan
 - b. Shall have aluminum blades riveted to corrosion-resistant steel spiders nd shall be dynamically balanced.

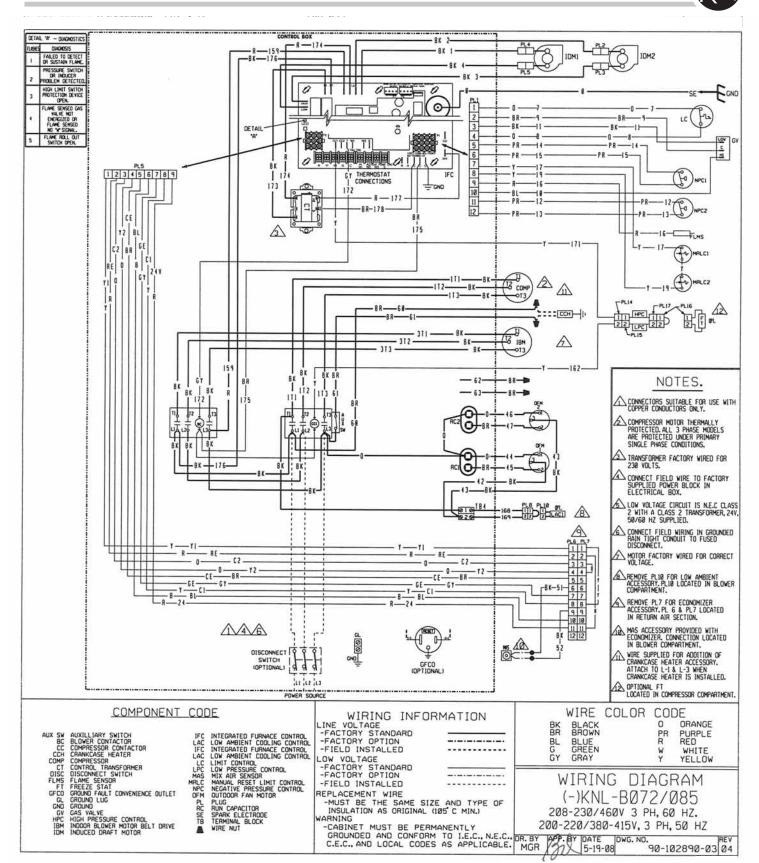
23 81 19.13.O. Special Features

- 1. Integrated Economizers:
 - a. Integrated, gear-driven parallel modulating blade design type capable of simultaneous economizer and compressor operation.
 - b. Independent modules for vertical or horizontal return configurations shall be available. Vertical return modules shall be available as a factory installed option.
 - c. Damper blades shall be galvanized steel with metal gears. Plastic or composite blades on intake or return shall not be acceptable.
 - d. Shall include all hardware and controls to provide free cooling with outdoor air when temperature and/or humidity are below setpoints.
 - e. Shall be equipped with gear driven dampers for both the outdoor ventilation air and the return air for positive air stream control.
 - f. Shall be equipped with low-leakage dampers, not to exceed 2% leakage at 1 in. wg pressure differential.
 - g. Shall be capable of introducing up to 100% outdoor air.
 - h. Shall be equipped with a barometric relief damper capable of relieving up to 100% return air.
 - i. Shall be designed to close damper(s) during loss-of-power situations with spring return built into motor.
 - j. Enthalpy sensor shall be provided as standard. Outdoor air sensor set point shall be adjustable and shall range from 40 to 100°F / 4 to 38°C. Additional sensor options shall be available as accessories.
 - k. The economizer shall maintain minimum airflow into the building during occupied period and provide design ventilation rate for full occupancy. A remote potentiometer may be used to override the damper set point.
 - I. Dampers shall be completely closed when the unit is in the unoccupied mode.
 - m. Economizer controller shall accept a 2-10Vdc CO2 sensor input for IAQ/DCV control. In this mode, dampers shall modulate the outdoor-air damper to provide ventilation based on the sensor input.
 - n. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
 - o. Economizer controller shall provide indications when in free cooling mode, in the DCV mode, or the exhaust fan contact is closed.
 - p. Economizer wire harness will have provision for smoke detector.
- 2. Manual damper
 - a. Manual damper package shall consist of damper, air inlet screen, and rain hood which can be preset to admit up to 50% outdoor air for year round ventilation.

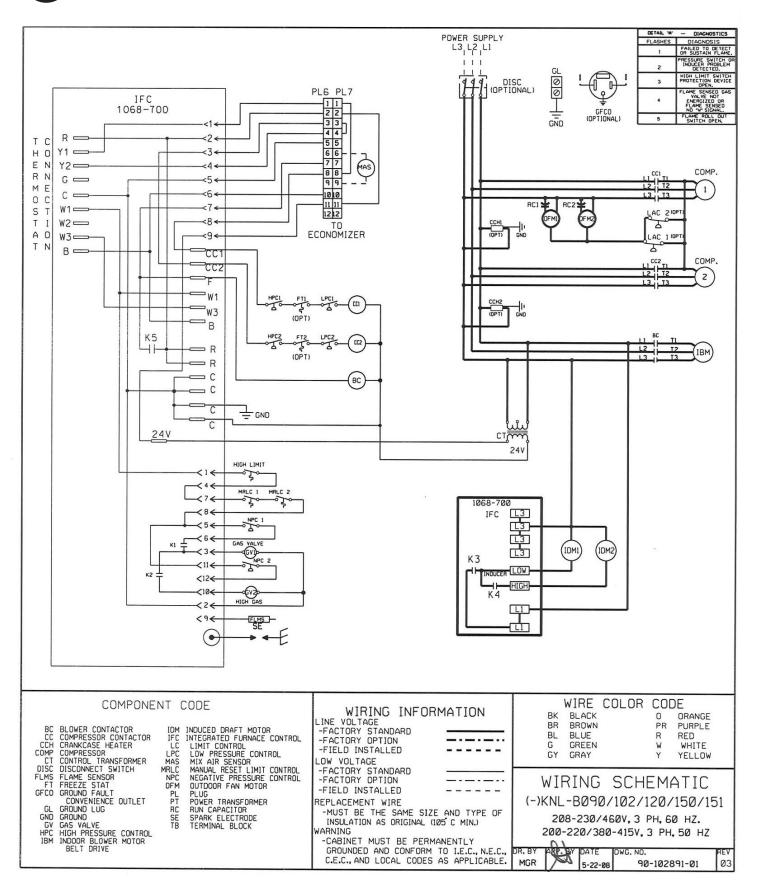
- 3. Liquid Propane (LP) Conversion Kit
 - a. Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit for use with liquefied propane, up to 2000 ft (610m) elevation.
- 4. Flue Shield
 - a. Flue shield shall provide protection from the hot sides of the gas flue hood.
- 5. Condenser Coil Hail Guard Assembly
 - a. Shall protect against damage from hail.
 - b. Shall be louvered style.
- 6. Unit-Mounted, Non-Fused Disconnect Switch:
 - a. Switch shall be factory-installed, internally mounted.
 - b. National Electric Code (NEC) and UL approved non-fused switch shall provide unit power shutoff.
 - c. Shall be accessible from outside the unit.
 - d. Shall provide local shutdown and lockout capability.
- 7. Convenience Outlet:
 - a. Powered convenience outlet.
 - b. Outlet shall be powered from main line power to the rooftop unit.
 - c. Outlet shall be powered from line side or load side of disconnect by installing contractor, as required by code. If outlet is powered from load side of disconnect, unit electrical ratings shall be UL certified and rated for additional outlet amperage.
 - d. Outlet shall be factory-installed and internally mounted with easily accessible 115-v female receptacle.
 - e. Outlet shall include 15 amp GFI receptacles with independent fuse protection.
 - f. Voltage required to operate convenience outlet shall be provided by a factory-installed step-down transformer.
 - g. Outlet shall be accessible from outside the unit.
 - h. Non-Powered convenience outlet.
 - i. Outlet shall be powered from a separate 115-120v power source.
 - j. A transformer shall not be included.
 - k. Outlet shall be field-installed and internally mounted with easily accessible 115-v female receptacle.
 - I. Outlet shall include 15 amp GFI receptacle with independent fuse protection.
 - m. Outlet shall be accessible from outside the unit.
- 8. Flue Discharge Deflector:
 - a. Flue discharge deflector shall direct unit exhaust vertically instead of horizontally.
 - b. Deflector shall be defined as a "natural draft" device by the National Fuel and Gas (NFG) code.
- 9. Roof Curbs (Vertical):
 - a. Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
 - b. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.
- 10. Universal Gas Conversion Kit:
 - a. Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit to operate from 2000-7000 ft (610 to 2134m) elevation with natural gas or from 0-7000 ft (90-2134m) elevation with liquefied propane.
- 11. Return Air Enthalpy Sensor:
 - a. The return air enthalpy sensor shall be used in conjunction with an outdoor air enthalpy sensor to provide differential enthalpy control.
- 12. Indoor Air Quality (CO2) Sensor:
 - a. Shall be able to provide demand ventilation indoor air quality (IAQ) control.
 - b. The IAQ sensor shall be available in duct mount, wall mount, or wall mount with LED display. The set point shall have adjustment capability.

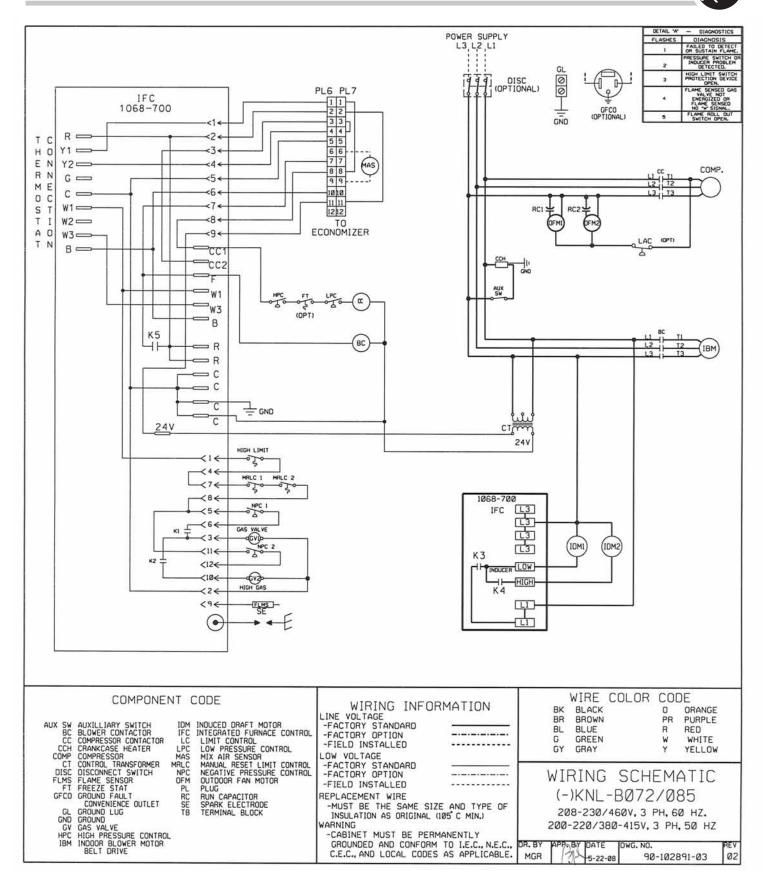
MECHANICAL SPECIFICATIONS—SKNL- SERIES


13. Smoke detectors:


- a. Shall be a Four-Wire Controller and Detector.
- b. Shall be environmental compensated with differential sensing for reliable, stable, and drift-free sensitivity.
- c. Shall use magnet-activated test/reset sensor switches.
- d. Shall have tool-less connection terminal access.
- e. Shall have a recessed momentary switch for testing and resetting the detector.
- f. Controller shall include:
 - i. One set of normally open alarm initiation contacts for connection to an initiating device circuit on a fire alarm control panel
 - ii. Two Form-C auxiliary alarm relays for interface with rooftop unit or other equipment
 - iii. One Form-C supervision (trouble) relay to control the operation of the Trouble LED on a remote test/reset station
 - iv. Capable of direct connection to two individual detector modules.
 - v. Can be wired to up to 14 other duct smoke detectors for multiple fan shutdown applications.

14. Barometric relief


- a. Shall include damper, seals, hard-ware, and hoods to relieve excess building pressure.
- b. Damper shall gravity-close upon shutdown.
- 15. Time Guard
 - a. Shall prevent compressor short cycling by providing a 5-minute delay (±2 minutes) before restarting a compressor after shutdown for any reason.
 - b. One device shall be required per compressor.



Before proceeding with installation, refer to installation instructions packaged with each model, as well as complying with all Federal, State, Provincial, and Local codes, regulations, and practices. Rheem Heating, Cooling and Water Heating

P.O. Box 17010, Fort Smith, AR 72917

"In keeping with its policy of continuous progress and product improvement, Rheem reserves the right to make changes without notice." PRINTED IN U.S.A. 3-11 DC FORM NO. EXR11-841 REV. 2 Supersedes Form No. EXR11-841 Rev. 1